These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 8955644)

  • 1. Regulation of phosphatase synthesis in Saccharomyces cerevisiae--a review.
    Oshima Y; Ogawa N; Harashima S
    Gene; 1996 Nov; 179(1):171-7. PubMed ID: 8955644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of inorganic phosphate transport systems in Saccharomyces cerevisiae.
    Tamai Y; Toh-e A; Oshima Y
    J Bacteriol; 1985 Nov; 164(2):964-8. PubMed ID: 3902805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The phosphatase system in Saccharomyces cerevisiae.
    Oshima Y
    Genes Genet Syst; 1997 Dec; 72(6):323-34. PubMed ID: 9544531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A putative membrane protein, Pho88p, involved in inorganic phosphate transport in Saccharomyces cerevisiae.
    Yompakdee C; Ogawa N; Harashima S; Oshima Y
    Mol Gen Genet; 1996 Jul; 251(5):580-90. PubMed ID: 8709965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disturbance of the machinery for the gene expression by acidic pH in the repressible acid phosphatase system of Saccharomyces cerevisiae.
    Toh-e A; Kobayashi S; Oshima Y
    Mol Gen Genet; 1978 Jun; 162(2):139-49. PubMed ID: 27717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of acid phosphatase synthesis in Saccharomyces cerevisiae.
    Elorza MV; Rodriguez L; Villanueva JR; Sentandreu R
    Biochim Biophys Acta; 1978 Nov; 521(1):342-51. PubMed ID: 363161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the transcriptionally repressed phosphate-repressible acid phosphatase gene (PHO5) of Saccharomyces cerevisiae.
    Bergman LW; Stranathan MC; Preis LH
    Mol Cell Biol; 1986 Jan; 6(1):38-46. PubMed ID: 3537687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Function of the PHO regulatory genes for repressible acid phosphatase synthesis in Saccharomyces cerevisiae.
    Yoshida K; Ogawa N; Oshima Y
    Mol Gen Genet; 1989 May; 217(1):40-6. PubMed ID: 2671650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular analysis of the DNA sequences involved in the transcriptional regulation of the phosphate-repressible acid phosphatase gene (PHO5) of Saccharomyces cerevisiae.
    Bergman LW; McClinton DC; Madden SL; Preis LH
    Proc Natl Acad Sci U S A; 1986 Aug; 83(16):6070-4. PubMed ID: 3526349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The yeast phosphatase system.
    Vogel K; Hinnen A
    Mol Microbiol; 1990 Dec; 4(12):2013-7. PubMed ID: 1965216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Negative regulatory elements of the Saccharomyces cerevisiae PHO system: interaction between PHO80 and PHO85 proteins.
    Gilliquet V; Legrain M; Berben G; Hilger F
    Gene; 1990 Dec; 96(2):181-8. PubMed ID: 2269431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Genetic and biochemical study of yeast acid phosphatases. XI. Gene ACP80 controls inorganic phosphate transport].
    Sambuk EV; Alenin VV; Kozhin SA
    Genetika; 1985 Sep; 21(9):1449-54. PubMed ID: 3905510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological control of repressible acid phosphatase gene transcripts in Saccharomyces cerevisiae.
    Bostian KA; Lemire JM; Halvorson HO
    Mol Cell Biol; 1983 May; 3(5):839-53. PubMed ID: 6346058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repressed and derepressed synthesis of phosphatass during synchronous growth of Chorella pyrenoidosa.
    Knutsen G
    Biochim Biophys Acta; 1968 Jun; 161(1):205-14. PubMed ID: 5661373
    [No Abstract]   [Full Text] [Related]  

  • 15. A constitutive mutation, phoT, of the repressible acid phosphatase synthesis with inability to transport inorganic phosphate in Saccharomyces cerevisiae.
    Ueda Y; Oshima Y
    Mol Gen Genet; 1975; 136(3):255-9. PubMed ID: 16094976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Regulatory circuits for gene expression: the metabolism of galactose and phosphate in Saccharomyces cerevisiae].
    Oshima Y; Tohe A; Matsumoto K
    Tanpakushitsu Kakusan Koso; 1984 Jan; 29(1):14-28. PubMed ID: 6369399
    [No Abstract]   [Full Text] [Related]  

  • 17. A gene controlling the synthesis of non specific alkaline phosphatase in Saccharomyces cerevisiae.
    Toh-E A; Nakamura H; Oshima Y
    Biochim Biophys Acta; 1976 Mar; 428(1):182-92. PubMed ID: 769832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mode of expression of the positive regulatory genes PHO2 and PHO4 of the phosphatase regulon in Saccharomyces cerevisiae.
    Yoshida K; Kuromitsu Z; Ogawa N; Oshima Y
    Mol Gen Genet; 1989 May; 217(1):31-9. PubMed ID: 2505053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Researchers find new role for cell cycle proteins.
    Marx J
    Science; 1994 Feb; 263(5150):1093. PubMed ID: 8108726
    [No Abstract]   [Full Text] [Related]  

  • 20. Synthesis of repressible acid phosphatase in Saccharomyces cerevisiae under conditions of enzyme instability.
    Bostian KA; Lemire JM; Halvorson HO
    Mol Cell Biol; 1982 Jan; 2(1):1-10. PubMed ID: 7050664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.