BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 8956152)

  • 1. Prerequisites for tissue specific and position independent expression of a gene locus in transgenic mice.
    Bonifer C; Huber MC; Jägle U; Faust N; Sippel AE
    J Mol Med (Berl); 1996 Nov; 74(11):663-71. PubMed ID: 8956152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the chicken lysozyme locus in transgenic mice.
    Bonifer C; Huber MC; Faust N; Sippel AE
    Crit Rev Eukaryot Gene Expr; 1996; 6(2-3):285-97. PubMed ID: 8855392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic position effects lead to an inefficient reorganization of nucleosomes in the 5'-regulatory region of the chicken lysozyme locus in transgenic mice.
    Huber MC; Krüger G; Bonifer C
    Nucleic Acids Res; 1996 Apr; 24(8):1443-52. PubMed ID: 8628676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The developmental activation of the chicken lysozyme locus in transgenic mice requires the interaction of a subset of enhancer elements with the promoter.
    Huber MC; Jägle U; Krüger G; Bonifer C
    Nucleic Acids Res; 1997 Aug; 25(15):2992-3000. PubMed ID: 9224598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromosomal position effects in chicken lysozyme gene transgenic mice are correlated with suppression of DNase I hypersensitive site formation.
    Huber MC; Bosch FX; Sippel AE; Bonifer C
    Nucleic Acids Res; 1994 Oct; 22(20):4195-201. PubMed ID: 7937145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic chromatin: the regulatory domain organization of eukaryotic gene loci.
    Bonifer C; Hecht A; Saueressig H; Winter DM; Sippel AE
    J Cell Biochem; 1991 Oct; 47(2):99-108. PubMed ID: 1757483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of positive and negative cis-regulatory elements in the transcriptional activation of the lysozyme locus in developing macrophages of transgenic mice.
    Jägle U; Müller AM; Kohler H; Bonifer C
    J Biol Chem; 1997 Feb; 272(9):5871-9. PubMed ID: 9038204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissection of the locus control function located on the chicken lysozyme gene domain in transgenic mice.
    Bonifer C; Yannoutsos N; Krüger G; Grosveld F; Sippel AE
    Nucleic Acids Res; 1994 Oct; 22(20):4202-10. PubMed ID: 7937146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of gene regulation as revealed by differential regulation of the chicken lysozyme transgene and the endogenous mouse lysozyme gene in mouse macrophages.
    Bonifer C; Bosch FX; Faust N; Schuhmann A; Sippel AE
    Eur J Biochem; 1994 Nov; 226(1):227-35. PubMed ID: 7957252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue specific and position independent expression of the complete gene domain for chicken lysozyme in transgenic mice.
    Bonifer C; Vidal M; Grosveld F; Sippel AE
    EMBO J; 1990 Sep; 9(9):2843-8. PubMed ID: 2390972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differentiation-dependent alterations in histone methylation and chromatin architecture at the inducible chicken lysozyme gene.
    Lefevre P; Lacroix C; Tagoh H; Hoogenkamp M; Melnik S; Ingram R; Bonifer C
    J Biol Chem; 2005 Jul; 280(30):27552-60. PubMed ID: 15923188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An in vitro differentiation system for the examination of transgene activation in mouse macrophages.
    Faust N; Bonifer C; Wiles MV; Sippel AE
    DNA Cell Biol; 1994 Sep; 13(9):901-7. PubMed ID: 7917012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatin fine structure profiles for a developmentally regulated gene: reorganization of the lysozyme locus before trans-activator binding and gene expression.
    Kontaraki J; Chen HH; Riggs A; Bonifer C
    Genes Dev; 2000 Aug; 14(16):2106-22. PubMed ID: 10950873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmentally regulated recruitment of transcription factors and chromatin modification activities to chicken lysozyme cis-regulatory elements in vivo.
    Lefevre P; Melnik S; Wilson N; Riggs AD; Bonifer C
    Mol Cell Biol; 2003 Jun; 23(12):4386-400. PubMed ID: 12773578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A nuclear DNA attachment element mediates elevated and position-independent gene activity.
    Stief A; Winter DM; Strätling WH; Sippel AE
    Nature; 1989 Sep; 341(6240):343-5. PubMed ID: 2797152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Functional chromatin domain does not resist X chromosome inactivation: silencing of cLys correlates with methylation of a dual promoter-replication origin.
    Chong S; Kontaraki J; Bonifer C; Riggs AD
    Mol Cell Biol; 2002 Jul; 22(13):4667-76. PubMed ID: 12052875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic changes in the chromatin of the chicken lysozyme gene domain during differentiation of multipotent progenitors to macrophages.
    Huber MC; Graf T; Sippel AE; Bonifer C
    DNA Cell Biol; 1995 May; 14(5):397-402. PubMed ID: 7748489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The -3.9 kb DNaseI hypersensitive site of the chicken lysozyme locus harbours an enhancer with unusual chromatin reorganizing activity.
    Krüger G; Huber MC; Bonifer C
    Gene; 1999 Aug; 236(1):63-77. PubMed ID: 10433967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mouse M-lysozyme gene domain: identification of myeloid and differentiation specific DNasel hypersensitive sites and of a 3'-cis acting regulatory element.
    Möllers B; Klages S; Wedel A; Cross M; Spooncer E; Dexter TM; Renkawitz R
    Nucleic Acids Res; 1992 Apr; 20(8):1917-24. PubMed ID: 1579493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond the locus control region: new light on beta-globin locus regulation.
    Li XG; Liu DP; Liang CC
    Int J Biochem Cell Biol; 2001 Sep; 33(9):914-23. PubMed ID: 11461833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.