These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
325 related articles for article (PubMed ID: 8956331)
21. Transepithelial transport characteristics of the antihypertensive peptide, Lys-Val-Leu-Pro-Val-Pro, in human intestinal Caco-2 cell monolayers. Sun H; Liu D; Li S; Qin Z Biosci Biotechnol Biochem; 2009 Feb; 73(2):293-8. PubMed ID: 19202266 [TBL] [Abstract][Full Text] [Related]
22. Effect of insulin on cephalexin uptake and transepithelial transport in the human intestinal cell line Caco-2. Watanabe K; Terada K; Jinriki T; Sato J Eur J Pharm Sci; 2004 Jan; 21(1):87-95. PubMed ID: 14706815 [TBL] [Abstract][Full Text] [Related]
23. Transport of L-valine-acyclovir via the oligopeptide transporter in the human intestinal cell line, Caco-2. de Vrueh RL; Smith PL; Lee CP J Pharmacol Exp Ther; 1998 Sep; 286(3):1166-70. PubMed ID: 9732374 [TBL] [Abstract][Full Text] [Related]
24. Function and immunolocalization of overexpressed human intestinal H+/peptide cotransporter in adenovirus-transduced Caco-2 cells. Hsu CP; Walter E; Merkle HP; Rothen-Rutishauser B; Wunderli-Allenspach H; Hilfinger JM; Amidon GL AAPS PharmSci; 1999; 1(3):E12. PubMed ID: 11741208 [TBL] [Abstract][Full Text] [Related]
25. Transport and epithelial secretion of the cardiac glycoside, digoxin, by human intestinal epithelial (Caco-2) cells. Cavet ME; West M; Simmons NL Br J Pharmacol; 1996 Jul; 118(6):1389-96. PubMed ID: 8832062 [TBL] [Abstract][Full Text] [Related]
26. Inhibition of intestinal dipeptide transport by the neuropeptide VIP is an anti-absorptive effect via the VPAC1 receptor in a human enterocyte-like cell line (Caco-2). Anderson CM; Mendoza ME; Kennedy DJ; Raldua D; Thwaites DT Br J Pharmacol; 2003 Feb; 138(4):564-73. PubMed ID: 12598410 [TBL] [Abstract][Full Text] [Related]
27. Hormonal regulation of dipeptide transporter (PepT1) in Caco-2 cells with normal and anoxia/reoxygenation management. Sun BW; Zhao XC; Wang GJ; Li N; Li JS World J Gastroenterol; 2003 Apr; 9(4):808-12. PubMed ID: 12679938 [TBL] [Abstract][Full Text] [Related]
28. Permeability characteristics of polyamines across intestinal epithelium using the Caco-2 monolayer system: comparison between transepithelial flux and mitogen-stimulated uptake into epithelial cells. Milovic V; Faust D; Turchanowa L; Stein J; Caspary WF Nutrition; 2001 Jun; 17(6):462-6. PubMed ID: 11399404 [TBL] [Abstract][Full Text] [Related]
29. alpha(2)-adrenergic receptors stimulate oligopeptide transport in a human intestinal cell line. Berlioz F; Maoret JJ; Paris H; Laburthe M; Farinotti R; Rozé C J Pharmacol Exp Ther; 2000 Aug; 294(2):466-72. PubMed ID: 10900220 [TBL] [Abstract][Full Text] [Related]
30. Evaluation of PepT1 transport of food-derived antihypertensive peptides, Ile-Pro-Pro and Leu-Lys-Pro using in vitro, ex vivo and in vivo transport models. Gleeson JP; Brayden DJ; Ryan SM Eur J Pharm Biopharm; 2017 Jun; 115():276-284. PubMed ID: 28315445 [TBL] [Abstract][Full Text] [Related]
31. The effect of beta-turn structure on the passive diffusion of peptides across Caco-2 cell monolayers. Knipp GT; Vander Velde DG; Siahaan TJ; Borchardt RT Pharm Res; 1997 Oct; 14(10):1332-40. PubMed ID: 9358544 [TBL] [Abstract][Full Text] [Related]
32. Transepithelial transport of putrescine across monolayers of the human intestinal epithelial cell line, Caco-2. Milovic V; Turchanowa L; Stein J; Caspary WF World J Gastroenterol; 2001 Apr; 7(2):193-7. PubMed ID: 11819759 [TBL] [Abstract][Full Text] [Related]
33. Transport of Val-Leu-Pro-Val-Pro in human intestinal epithelial (Caco-2) cell monolayers. Lei L; Sun H; Liu D; Liu L; Li S J Agric Food Chem; 2008 May; 56(10):3582-6. PubMed ID: 18442243 [TBL] [Abstract][Full Text] [Related]
34. Structure-activity relationship of carbacephalosporins and cephalosporins: antibacterial activity and interaction with the intestinal proton-dependent dipeptide transport carrier of Caco-2 cells. Snyder NJ; Tabas LB; Berry DM; Duckworth DC; Spry DO; Dantzig AH Antimicrob Agents Chemother; 1997 Aug; 41(8):1649-57. PubMed ID: 9257735 [TBL] [Abstract][Full Text] [Related]
35. Transport of free and peptide-bound glycated amino acids: synthesis, transepithelial flux at Caco-2 cell monolayers, and interaction with apical membrane transport proteins. Hellwig M; Geissler S; Matthes R; Peto A; Silow C; Brandsch M; Henle T Chembiochem; 2011 May; 12(8):1270-9. PubMed ID: 21538757 [TBL] [Abstract][Full Text] [Related]
36. Cefaclor uptake by the proton-dependent dipeptide transport carrier of human intestinal Caco-2 cells and comparison to cephalexin uptake. Dantzig AH; Tabas LB; Bergin L Biochim Biophys Acta; 1992 Dec; 1112(2):167-73. PubMed ID: 1457450 [TBL] [Abstract][Full Text] [Related]
37. Transepithelial flux of early and advanced glycation compounds across Caco-2 cell monolayers and their interaction with intestinal amino acid and peptide transport systems. Grunwald S; Krause R; Bruch M; Henle T; Brandsch M Br J Nutr; 2006 Jun; 95(6):1221-8. PubMed ID: 16768847 [TBL] [Abstract][Full Text] [Related]
38. Basolateral glycylsarcosine (Gly-Sar) transport in Caco-2 cell monolayers is pH dependent. Berthelsen R; Nielsen CU; Brodin B J Pharm Pharmacol; 2013 Jul; 65(7):970-9. PubMed ID: 23738724 [TBL] [Abstract][Full Text] [Related]
39. The proton-coupled amino acid transporter, SLC36A1 (hPAT1), transports Gly-Gly, Gly-Sar and other Gly-Gly mimetics. Frølund S; Holm R; Brodin B; Nielsen CU Br J Pharmacol; 2010 Oct; 161(3):589-600. PubMed ID: 20880398 [TBL] [Abstract][Full Text] [Related]
40. Intestinal absorption of beta-lactam antibiotics and oligopeptides. Functional and stereospecific reconstitution of the oligopeptide transport system from rabbit small intestine. Kramer W; Girbig F; Gutjahr U; Kowalewski S; Adam F; Schiebler W Eur J Biochem; 1992 Mar; 204(2):923-30. PubMed ID: 1541303 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]