These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 8956347)
1. Effect of charge on oligopeptide transporter-mediated permeation of cyclic dipeptides across Caco-2 cell monolayers. Tamura K; Lee CP; Smith PL; Borchardt RT Pharm Res; 1996 Nov; 13(11):1752-4. PubMed ID: 8956347 [No Abstract] [Full Text] [Related]
2. Intestinal absorption of stable cyclic dipeptides by the oligopeptide transporter in rat. Mizuma T; Masubuchi S; Awazu S J Pharm Pharmacol; 1998 Feb; 50(2):167-72. PubMed ID: 9530984 [TBL] [Abstract][Full Text] [Related]
3. Metabolism, uptake, and transepithelial transport of the stereoisomers of Val-Val-Val in the human intestinal cell line, Caco-2. Tamura K; Lee CP; Smith PL; Borchardt RT Pharm Res; 1996 Nov; 13(11):1663-7. PubMed ID: 8956331 [TBL] [Abstract][Full Text] [Related]
4. Mechanisms of transport and structure-permeability relationship of sulfasalazine and its analogs in Caco-2 cell monolayers. Liang E; Proudfoot J; Yazdanian M Pharm Res; 2000 Oct; 17(10):1168-74. PubMed ID: 11145220 [TBL] [Abstract][Full Text] [Related]
5. Relationship between structure and permeability of dipeptide derivatives containing tryptophan and related compounds across human intestinal epithelial (Caco-2) cells. Ano R; Kimura Y; Urakami M; Shima M; Matsuno R; Ueno T; Akamatsu M Bioorg Med Chem; 2004 Jan; 12(1):249-55. PubMed ID: 14697790 [TBL] [Abstract][Full Text] [Related]
6. Effects of structural modifications on the intestinal permeability of angiotensin II receptor antagonists and the correlation of in vitro, in situ, and in vivo absorption. Ribadeneira MD; Aungst BJ; Eyermann CJ; Huang SM Pharm Res; 1996 Feb; 13(2):227-33. PubMed ID: 8932441 [TBL] [Abstract][Full Text] [Related]
7. Interactions of the dipeptide ester prodrugs of acyclovir with the intestinal oligopeptide transporter: competitive inhibition of glycylsarcosine transport in human intestinal cell line-Caco-2. Anand BS; Patel J; Mitra AK J Pharmacol Exp Ther; 2003 Feb; 304(2):781-91. PubMed ID: 12538834 [TBL] [Abstract][Full Text] [Related]
8. Characterization of efflux transporters involved in distribution and disposition of apixaban. Zhang D; He K; Herbst JJ; Kolb J; Shou W; Wang L; Balimane PV; Han YH; Gan J; Frost CE; Humphreys WG Drug Metab Dispos; 2013 Apr; 41(4):827-35. PubMed ID: 23382458 [TBL] [Abstract][Full Text] [Related]
9. Enantiomeric cyclic peptides with different Caco-2 permeability suggest carrier-mediated transport. Marelli UK; Bezençon J; Puig E; Ernst B; Kessler H Chemistry; 2015 May; 21(22):8023-7. PubMed ID: 25917866 [TBL] [Abstract][Full Text] [Related]
10. Small intestinal efflux mediated by MRP2 and BCRP shifts sulfasalazine intestinal permeability from high to low, enabling its colonic targeting. Dahan A; Amidon GL Am J Physiol Gastrointest Liver Physiol; 2009 Aug; 297(2):G371-7. PubMed ID: 19541926 [TBL] [Abstract][Full Text] [Related]
11. Intestinal absorption mechanism of mirabegron, a potent and selective β₃-adrenoceptor agonist: involvement of human efflux and/or influx transport systems. Takusagawa S; Ushigome F; Nemoto H; Takahashi Y; Li Q; Kerbusch V; Miyashita A; Iwatsubo T; Usui T Mol Pharm; 2013 May; 10(5):1783-94. PubMed ID: 23560393 [TBL] [Abstract][Full Text] [Related]
12. Bioactivatable Pseudotripeptidization of Cyclic Dipeptides To Increase the Affinity toward Oligopeptide Transporter 1 for Enhanced Oral Absorption: An Application to Cyclo(l-Hyp-l-Ser) (JBP485). Jiang Q; Zhang J; Tong P; Gao Y; Lv Y; Wang C; Luo M; Sun M; Wang J; Feng Y; Cao L; Wang G; Wang Y; Kan Q; Zhang T; Wang Y; Liu K; Sun J; He Z J Med Chem; 2019 Sep; 62(17):7708-7721. PubMed ID: 31393124 [TBL] [Abstract][Full Text] [Related]
13. Intestinal permeability of cyclic peptides: common key backbone motifs identified. Beck JG; Chatterjee J; Laufer B; Kiran MU; Frank AO; Neubauer S; Ovadia O; Greenberg S; Gilon C; Hoffman A; Kessler H J Am Chem Soc; 2012 Jul; 134(29):12125-33. PubMed ID: 22737969 [TBL] [Abstract][Full Text] [Related]
14. An in vitro and in silico study on the flavonoid-mediated modulation of the transport of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) through Caco-2 monolayers. Schutte ME; Freidig AP; van de Sandt JJ; Alink GM; Rietjens IM; Groten JP Toxicol Appl Pharmacol; 2006 Dec; 217(2):204-15. PubMed ID: 16997339 [TBL] [Abstract][Full Text] [Related]
15. Characterization of P-glycoprotein mediated transport of K02, a novel vinylsulfone peptidomimetic cysteine protease inhibitor, across MDR1-MDCK and Caco-2 cell monolayers. Zhang Y; Benet LZ Pharm Res; 1998 Oct; 15(10):1520-4. PubMed ID: 9794492 [TBL] [Abstract][Full Text] [Related]
16. Peptide transport assay for TAP function. Wang Y; Guttoh DS; Androlewicz MJ Methods Enzymol; 1998; 292():745-53. PubMed ID: 9711596 [No Abstract] [Full Text] [Related]
17. A rapid screening system to determine drug affinities for the intestinal dipeptide transporter 2: affinities of ACE inhibitors. Moore VA; Irwin WJ; Timmins P; Lambert PA; Chong S; Dando SA; Morrison RA Int J Pharm; 2000 Dec; 210(1-2):29-44. PubMed ID: 11163985 [TBL] [Abstract][Full Text] [Related]
18. Intestinal drug transport via the proton-coupled amino acid transporter PAT1 (SLC36A1) is inhibited by Gly-X(aa) dipeptides. Frølund S; Langthaler L; Kall MA; Holm R; Nielsen CU Mol Pharm; 2012 Sep; 9(9):2761-9. PubMed ID: 22853447 [TBL] [Abstract][Full Text] [Related]
19. Impact of transporters in oral absorption: a case study of in vitro and in vivo organic anion absorption. Gram LK; Rist GM; Steffansen B Mol Pharm; 2009; 6(5):1457-65. PubMed ID: 19548658 [TBL] [Abstract][Full Text] [Related]
20. New and better protocols for a short-term Caco-2 cell culture system. Yamashita S; Konishi K; Yamazaki Y; Taki Y; Sakane T; Sezaki H; Furuyama Y J Pharm Sci; 2002 Mar; 91(3):669-79. PubMed ID: 11920752 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]