These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 8956456)

  • 1. Tumors derived from antigen presenting cells.
    Levitsky HI
    Semin Immunol; 1996 Oct; 8(5):281-7. PubMed ID: 8956456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immune selection in murine tumors. Ph.d thesis.
    Svane IM; Engel AM
    APMIS Suppl; 2003; (106):1-46. PubMed ID: 12739251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Idiotypic vaccination for B-cell malignancies as a model for therapeutic cancer vaccines: from prototype protein to second generation vaccines.
    Ruffini PA; Neelapu SS; Kwak LW; Biragyn A
    Haematologica; 2002 Sep; 87(9):989-1001. PubMed ID: 12217812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tumor-host immune interactions and dendritic cell dysfunction.
    Yang L; Carbone DP
    Adv Cancer Res; 2004; 92():13-27. PubMed ID: 15530555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is cancer dangerous to the immune system?
    Fuchs EJ; Matzinger P
    Semin Immunol; 1996 Oct; 8(5):271-80. PubMed ID: 8956455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. B cells as antigen presenting cells.
    Rodríguez-Pinto D
    Cell Immunol; 2005 Dec; 238(2):67-75. PubMed ID: 16574086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antitumor vaccination: where we stand.
    Bocchia M; Bronte V; Colombo MP; De Vincentiis A; Di Nicola M; Forni G; Lanata L; Lemoli RM; Massaia M; Rondelli D; Zanon P; Tura S
    Haematologica; 2000 Nov; 85(11):1172-206. PubMed ID: 11074658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New insights in antigen processing and epitope selection: development of novel immunotherapeutic strategies for cancer, autoimmunity and infectious diseases.
    Haque A; Blum JS
    J Biol Regul Homeost Agents; 2005; 19(3-4):93-104. PubMed ID: 16602623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. T-cell adoptive therapy of tumors: mechanisms of improved therapeutic performance.
    Cohen PA; Peng L; Kjaergaard J; Plautz GE; Finke JH; Koski GK; Czerniecki BJ; Shu S
    Crit Rev Immunol; 2001; 21(1-3):215-48. PubMed ID: 11642606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expanded tumor-reactive CD4+ T-cell responses to human cancers induced by secondary anti-CD3/anti-CD28 activation.
    Li Q; Furman SA; Bradford CR; Chang AE
    Clin Cancer Res; 1999 Feb; 5(2):461-9. PubMed ID: 10037198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photodynamic therapy and anti-tumor immunity.
    Gollnick SO; Owczarczak B; Maier P
    Lasers Surg Med; 2006 Jun; 38(5):509-15. PubMed ID: 16788921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modifying professional antigen-presenting cells to enhance DNA vaccine potency.
    Hung CF; Yang M; Wu TC
    Methods Mol Med; 2006; 127():199-220. PubMed ID: 16988456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of various sources of antigen-presenting cells for the generation of GP2-tumor peptide specific cytotoxic T-lymphocytes.
    Peiper M; Goedegebuure PS; Alldinger I; Knoefel WT; Izbicki JR; Eberlein TJ
    Anticancer Res; 2002; 22(6A):3357-63. PubMed ID: 12530087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor destruction and in situ delivery of antigen presenting cells promote anti-neoplastic immune responses: implications for the immunotherapy of pancreatic cancer.
    Rovere-Querini P; Manfredi AA
    JOP; 2004 Jul; 5(4):308-14. PubMed ID: 15254366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell intrinsic mechanisms of T-cell inhibition and application to cancer therapy.
    Peggs KS; Quezada SA; Allison JP
    Immunol Rev; 2008 Aug; 224():141-65. PubMed ID: 18759925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emergence of regulatory CD4+ T cell response to repetitive stimulation with antigen-presenting cells in vitro: implications in designing antigen-presenting cell-based tumor vaccines.
    Chakraborty NG; Li L; Sporn JR; Kurtzman SH; Ergin MT; Mukherji B
    J Immunol; 1999 May; 162(9):5576-83. PubMed ID: 10228040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Antitumoral action of interferons and interleukins in combination with radiotherapy. Part I: immunologic basis].
    Herskind C; Fleckenstein K; Lohr J; Li CY; Wenz F; Lohr F
    Strahlenther Onkol; 2004 Apr; 180(4):187-93. PubMed ID: 15057428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CD4+ T cells are able to promote tumor growth through inhibition of tumor-specific CD8+ T-cell responses in tumor-bearing hosts.
    den Boer AT; van Mierlo GJ; Fransen MF; Melief CJ; Offringa R; Toes RE
    Cancer Res; 2005 Aug; 65(15):6984-9. PubMed ID: 16061684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunosuppressive myeloid-derived suppressor cells can be converted into immunogenic APCs with the help of activated NKT cells: an alternative cell-based antitumor vaccine.
    Ko HJ; Lee JM; Kim YJ; Kim YS; Lee KA; Kang CY
    J Immunol; 2009 Feb; 182(4):1818-28. PubMed ID: 19201833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The requirement of multimodal therapy (vaccine, local tumor radiation, and reduction of suppressor cells) to eliminate established tumors.
    Kudo-Saito C; Schlom J; Camphausen K; Coleman CN; Hodge JW
    Clin Cancer Res; 2005 Jun; 11(12):4533-44. PubMed ID: 15958639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.