These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 8956490)

  • 1. Effect of cassavar cultivar, age and pretreatment processes of cellulase and xylanase production from cassava waste by Trichoderma harzianum.
    Onilude AA
    J Basic Microbiol; 1996; 36(6):421-31. PubMed ID: 8956490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of some physiological factors affecting xylanase production from Trichoderma harzianum 1073 D3.
    Seyis I; Aksoz N
    New Microbiol; 2003 Jan; 26(1):75-81. PubMed ID: 12578314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of crude cellulase and xylanase from Trichoderma harzianum PPDDN10 NFCCI-2925 and its application in photocopier waste paper recycling.
    Pathak P; Bhardwaj NK; Singh AK
    Appl Biochem Biotechnol; 2014 Apr; 172(8):3776-97. PubMed ID: 24574249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xylanase production by Trichoderma reesei rut C-30 on rice straw.
    Colina A; Sulbarán-De-Ferrer B; Aiello C; Ferrer A
    Appl Biochem Biotechnol; 2003; 105 -108():715-24. PubMed ID: 12721409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of fibrolytic enzymes on the hydrolysis and fermentation of pure cellulose and xylan by mixed ruminal microorganisms in vitro.
    Colombatto D; Mould FL; Bhatt MK; Morgavi DP; Beauchemin KA; Owen E
    J Anim Sci; 2003 Apr; 81(4):1040-50. PubMed ID: 12723094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Horticultural waste as the substrate for cellulase and hemicellulase production by Trichoderma reesei under solid-state fermentation.
    Xin F; Geng A
    Appl Biochem Biotechnol; 2010 Sep; 162(1):295-306. PubMed ID: 19707729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of Aspergillus xylanase by lignocellulosic waste fermentation and its application.
    Gawande PV; Kamat MY
    J Appl Microbiol; 1999 Oct; 87(4):511-9. PubMed ID: 10583678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production, properties, and application of xylanase from Aspergillus niger A3.
    Cai JM; Wu K; Zhang J; Pan RR
    Ann N Y Acad Sci; 1998 Dec; 864():214-8. PubMed ID: 9928094
    [No Abstract]   [Full Text] [Related]  

  • 9. Production of cellulase and xylanase in a bubble column using immobilized Aspergillus niger KKS.
    Kang SW; Kim SW; Lee JS
    Appl Biochem Biotechnol; 1995 May; 53(2):101-6. PubMed ID: 7763052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymic release of reducing sugars from oat hulls by cellulase, as influenced by Aspergillus ferulic acid esterase and trichoderma xylanase.
    Yu P; McKinnon JJ; Maenz DD; Olkowski AA; Racz VJ; Christensen DA
    J Agric Food Chem; 2003 Jan; 51(1):218-23. PubMed ID: 12502411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new xylanase from a Trichoderma harzianum strain.
    de Paula Silveira FQ; Sousa MV; Ricart CA; Milagres AM; de Medeiros CL; Filho EX
    J Ind Microbiol Biotechnol; 1999 Jul; 23(1):682-5. PubMed ID: 10455501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioprocessing of sweet sorghum with in situ-produced enzymes.
    Tengerdy RP; Szakacs G; Sipocz J
    Appl Biochem Biotechnol; 1996; 57-58():563-9. PubMed ID: 8669913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Kinetics of xylanase and cellulase production by Ascobolus gamundii (Fungi, Ascomycotina)].
    Sivori AS; Mercuri OA; Forchiassin F
    Rev Argent Microbiol; 1996; 28(1):9-15. PubMed ID: 8815461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of the biodegradation of some cellulosic wastes by acid pretreatment.
    Youssef KA; Ghareib M; Nour el Dein MM
    Acta Microbiol Pol; 1991; 40(3-4):187-95. PubMed ID: 1726620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raw oil palm frond leaves as cost-effective substrate for cellulase and xylanase productions by Trichoderma asperellum UC1 under solid-state fermentation.
    Ezeilo UR; Lee CT; Huyop F; Zakaria II; Wahab RA
    J Environ Manage; 2019 Aug; 243():206-217. PubMed ID: 31096173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production, characterization and application of the cellulase-free xylanase from Aspergillus niger.
    Qy Y; Gao P; Wang D; Zhao X; Zhang X
    Appl Biochem Biotechnol; 1996; 57-58():375-81. PubMed ID: 8669904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined pretreatment of sugarcane bagasse using alkali and ionic liquid to increase hemicellulose content and xylanase production.
    Rashid R; Ejaz U; Ali FI; Hashmi IA; Bari A; Liu J; Wang L; Fu P; Sohail M
    BMC Biotechnol; 2020 Dec; 20(1):64. PubMed ID: 33298027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Saccharification of rice straw by cellulase from a local Trichoderma harzianum SNRS3 for biobutanol production.
    Rahnama N; Foo HL; Abdul Rahman NA; Ariff A; Md Shah UK
    BMC Biotechnol; 2014 Dec; 14():103. PubMed ID: 25496491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Butanediol production from cellulose and hemicellulose by Klebsiella pneumoniae grown in sequential coculture with Trichoderma harzianum.
    Yu EK; Deschatelets L; Louis-Seize G; Saddler JN
    Appl Environ Microbiol; 1985 Oct; 50(4):924-9. PubMed ID: 3909967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced cellulase production by Trichoderma harzianum by cultivation on glycerol followed by induction on cellulosic substrates.
    Delabona Pda S; Lima DJ; Robl D; Rabelo SC; Farinas CS; Pradella JG
    J Ind Microbiol Biotechnol; 2016 May; 43(5):617-26. PubMed ID: 26883662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.