These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 8958185)

  • 1. AG2034: a novel inhibitor of glycinamide ribonucleotide formyltransferase.
    Boritzki TJ; Barlett CA; Zhang C; Howland EF
    Invest New Drugs; 1996; 14(3):295-303. PubMed ID: 8958185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folic acid-enhanced synergy for the combination of trimetrexate plus the glycinamide ribonucleotide formyltransferase inhibitor 4-[2-(2-amino-4-oxo-4,6,7,8-tetrahydro-3H-pyrimidino[5,4,6][1,4]thiazin -6-yl)-(S)-ethyl]-2,5-thienoylamino-L-glutamic acid (AG2034): comparison across sensitive and resistant human tumor cell lines.
    Faessel HM; Slocum HK; Rustum YM; Greco WR
    Biochem Pharmacol; 1999 Mar; 57(5):567-77. PubMed ID: 9952321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemistry and pharmacology of glycinamide ribonucleotide formyltransferase inhibitors: LY309887 and lometrexol.
    Mendelsohn LG; Shih C; Schultz RM; Worzalla JF
    Invest New Drugs; 1996; 14(3):287-94. PubMed ID: 8958184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The depletion of cellular ATP by AG2034 mediates cell death or cytostasis in a hypoxanthine-dependent manner in human prostate cancer cells.
    Obajimi O; Melera PW
    Cancer Chemother Pharmacol; 2008 Jul; 62(2):215-26. PubMed ID: 17896107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An inhibitor of glycinamide ribonucleotide formyltransferase is selectively cytotoxic to cells that lack a functional G1 checkpoint.
    Zhang CC; Boritzki TJ; Jackson RC
    Cancer Chemother Pharmacol; 1998; 41(3):223-8. PubMed ID: 9443639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel class of monoglutamated antifolates exhibits tight-binding inhibition of human glycinamide ribonucleotide formyltransferase and potent activity against solid tumors.
    Habeck LL; Leitner TA; Shackelford KA; Gossett LS; Schultz RM; Andis SL; Shih C; Grindey GB; Mendelsohn LG
    Cancer Res; 1994 Feb; 54(4):1021-6. PubMed ID: 8313357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LY231514, a pyrrolo[2,3-d]pyrimidine-based antifolate that inhibits multiple folate-requiring enzymes.
    Shih C; Chen VJ; Gossett LS; Gates SB; MacKellar WC; Habeck LL; Shackelford KA; Mendelsohn LG; Soose DJ; Patel VF; Andis SL; Bewley JR; Rayl EA; Moroson BA; Beardsley GP; Kohler W; Ratnam M; Schultz RM
    Cancer Res; 1997 Mar; 57(6):1116-23. PubMed ID: 9067281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical and biological studies on 2-desamino-2-methylaminopterin, an antifolate the polyglutamates of which are more potent than the monoglutamate against three key enzymes of folate metabolism.
    Rosowsky A; Galivan J; Beardsley GP; Bader H; O'Connor BM; Russello O; Moroson BA; DeYarman MT; Kerwar SS; Freisheim JH
    Cancer Res; 1992 Apr; 52(8):2148-55. PubMed ID: 1313737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Side chain modified 5-deazafolate and 5-deazatetrahydrofolate analogues as mammalian folylpolyglutamate synthetase and glycinamide ribonucleotide formyltransferase inhibitors: synthesis and in vitro biological evaluation.
    Rosowsky A; Forsch RA; Reich VE; Freisheim JH; Moran RG
    J Med Chem; 1992 May; 35(9):1578-88. PubMed ID: 1578484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thymidine and hypoxanthine protection patterns of the folic acid-enhanced synergies for combinations of trimetrexate plus a polyglutamylatable inhibitor of purine or thymidylate synthesis against human ileocecal HCT-8 cells.
    Faessel HM; Slocum HK; Rustum YM; Greco WR
    Int J Oncol; 2003 Aug; 23(2):401-9. PubMed ID: 12851689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel pyrrolo[2,3-d]pyrimidine antifolate TNP-351: cytotoxic effect on methotrexate-resistant CCRF-CEM cells and inhibition of transformylases of de novo purine biosynthesis.
    Itoh F; Russello O; Akimoto H; Beardsley GP
    Cancer Chemother Pharmacol; 1994; 34(4):273-9. PubMed ID: 8033293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tight binding of folate substrates and inhibitors to recombinant mouse glycinamide ribonucleotide formyltransferase.
    Sanghani SP; Moran RG
    Biochemistry; 1997 Aug; 36(34):10506-16. PubMed ID: 9265631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of 5-substituted pyrrolo[2,3-d]pyrimidine antifolates as dual-acting inhibitors of glycinamide ribonucleotide formyltransferase and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase in de novo purine nucleotide biosynthesis: implications of inhibiting 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase to ampk activation and antitumor activity.
    Mitchell-Ryan S; Wang Y; Raghavan S; Ravindra MP; Hales E; Orr S; Cherian C; Hou Z; Matherly LH; Gangjee A
    J Med Chem; 2013 Dec; 56(24):10016-10032. PubMed ID: 24256410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, biological, and antitumor activity of a highly potent 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitor with proton-coupled folate transporter and folate receptor selectivity over the reduced folate carrier that inhibits β-glycinamide ribonucleotide formyltransferase.
    Wang L; Desmoulin SK; Cherian C; Polin L; White K; Kushner J; Fulterer A; Chang MH; Mitchell-Ryan S; Stout M; Romero MF; Hou Z; Matherly LH; Gangjee A
    J Med Chem; 2011 Oct; 54(20):7150-64. PubMed ID: 21879757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacokinetic and pharmacodynamic evaluation of the glycinamide ribonucleotide formyltransferase inhibitor AG2034.
    McLeod HL; Cassidy J; Powrie RH; Priest DG; Zorbas MA; Synold TW; Shibata S; Spicer D; Bissett D; Pithavala YK; Collier MA; Paradiso LJ; Roberts JD
    Clin Cancer Res; 2000 Jul; 6(7):2677-84. PubMed ID: 10914709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preclinical cellular pharmacology of LY231514 (MTA): a comparison with methotrexate, LY309887 and raltitrexed for their effects on intracellular folate and nucleoside triphosphate pools in CCRF-CEM cells.
    Chen VJ; Bewley JR; Andis SL; Schultz RM; Iversen PW; Shih C; Mendelsohn LG; Seitz DE; Tonkinson JL
    Br J Cancer; 1998; 78 Suppl 3(Suppl 3):27-34. PubMed ID: 9717988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of de novo purine synthesis in human prostate cells results in ATP depletion, AMPK activation and induces senescence.
    Obajimi O; Keen JC; Melera PW
    Prostate; 2009 Aug; 69(11):1206-21. PubMed ID: 19434633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural features of 5,10-dideaza-5,6,7,8-tetrahydrofolate that determine inhibition of mammalian glycinamide ribonucleotide formyltransferase.
    Baldwin SW; Tse A; Gossett LS; Taylor EC; Rosowsky A; Shih C; Moran RG
    Biochemistry; 1991 Feb; 30(7):1997-2006. PubMed ID: 1993209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carrier- and receptor-mediated transport of folate antagonists targeting folate-dependent enzymes: correlates of molecular-structure and biological activity.
    Westerhof GR; Schornagel JH; Kathmann I; Jackman AL; Rosowsky A; Forsch RA; Hynes JB; Boyle FT; Peters GJ; Pinedo HM
    Mol Pharmacol; 1995 Sep; 48(3):459-71. PubMed ID: 7565626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and antifolate activity of 5-methyl-5,10-dideaza analogues of aminopterin and folic acid and an alternative synthesis of 5,10-dideazatetrahydrofolic acid, a potent inhibitor of glycinamide ribonucleotide formyltransferase.
    Piper JR; McCaleb GS; Montgomery JA; Kisliuk RL; Gaumont Y; Thorndike J; Sirotnak FM
    J Med Chem; 1988 Nov; 31(11):2164-9. PubMed ID: 3184124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.