These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 8958219)

  • 1. Functional impairment of renal afferent arteriolar voltage-gated calcium channels in rats with diabetes mellitus.
    Carmines PK; Ohishi K; Ikenaga H
    J Clin Invest; 1996 Dec; 98(11):2564-71. PubMed ID: 8958219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exaggerated impact of ATP-sensitive K(+) channels on afferent arteriolar diameter in diabetes mellitus.
    Ikenaga H; Bast JP; Fallet RW; Carmines PK
    J Am Soc Nephrol; 2000 Jul; 11(7):1199-1207. PubMed ID: 10864575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Pharmacological studies on alterations in contractile reactivity in aortas isolated from experimental diabetic rats].
    Kawasaki H
    Hokkaido Igaku Zasshi; 1997 Nov; 72(6):649-65. PubMed ID: 9465317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Segment-specific effect of chloride channel blockade on rat renal arteriolar contractile responses to angiotensin II.
    Carmines PK
    Am J Hypertens; 1995 Jan; 8(1):90-4. PubMed ID: 7734105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Renal arteriolar contractile responses to angiotensin II in rats with poorly controlled diabetes mellitus.
    Carmines PK; Ohishi K
    Clin Exp Pharmacol Physiol; 1999 Nov; 26(11):877-82. PubMed ID: 10561808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative contributions of Ca2+ mobilization and influx in renal arteriolar contractile responses to arginine vasopressin.
    Fallet RW; Ikenaga H; Bast JP; Carmines PK
    Am J Physiol Renal Physiol; 2005 Mar; 288(3):F545-51. PubMed ID: 15536171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superoxide anion curbs nitric oxide modulation of afferent arteriolar ANG II responsiveness in diabetes mellitus.
    Schoonmaker GC; Fallet RW; Carmines PK
    Am J Physiol Renal Physiol; 2000 Feb; 278(2):F302-9. PubMed ID: 10662734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vascular contraction induced by activation of membrane calcium ion channels is enhanced in streptozotocin-diabetes.
    White RE; Carrier GO
    J Pharmacol Exp Ther; 1990 Jun; 253(3):1057-62. PubMed ID: 1694242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased myogenic tone in skeletal muscle arterioles of diabetic rats. Possible role of increased activity of smooth muscle Ca2+ channels and protein kinase C.
    Ungvari Z; Pacher P; Kecskemeti V; Papp G; Szollár L; Koller A
    Cardiovasc Res; 1999 Sep; 43(4):1018-28. PubMed ID: 10615429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. T-type calcium channels in the regulation of afferent and efferent arterioles in rats.
    Feng MG; Li M; Navar LG
    Am J Physiol Renal Physiol; 2004 Feb; 286(2):F331-7. PubMed ID: 14583435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of short-term ethanol treatment on voltage-dependent calcium channels in Kupffer cells.
    Hijioka T; Goto M; Lemasters JJ; Thurman RG
    Hepatology; 1993 Aug; 18(2):400-5. PubMed ID: 7687982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro and in vivo vascular responses to the L-type calcium channel activator, Bay K 8644, in rats with cirrhosis.
    Moreau R; Oberti F; Lahaye P; Gadano A; Cailmail S; Sogni P; Cales P; Lebrec D
    J Gastroenterol Hepatol; 1998 Dec; 13(12):1254-8. PubMed ID: 9918435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ca2+ channel subtypes and pharmacology in the kidney.
    Hayashi K; Wakino S; Sugano N; Ozawa Y; Homma K; Saruta T
    Circ Res; 2007 Feb; 100(3):342-53. PubMed ID: 17307972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tempol prevents altered K(+) channel regulation of afferent arteriolar tone in diabetic rat kidney.
    Troncoso Brindeiro CM; Lane PH; Carmines PK
    Hypertension; 2012 Mar; 59(3):657-64. PubMed ID: 22252401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo properties of potassium channels in cerebral blood vessels during diabetes mellitus.
    Mayhan WG; Mayhan JF; Sun H; Patel KP
    Microcirculation; 2004; 11(7):605-13. PubMed ID: 15513870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potassium channel contributions to afferent arteriolar tone in normal and diabetic rat kidney.
    Troncoso Brindeiro CM; Fallet RW; Lane PH; Carmines PK
    Am J Physiol Renal Physiol; 2008 Jul; 295(1):F171-8. PubMed ID: 18495797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of KATP channel blocker U37883A on renal function in experimental diabetes mellitus in rats.
    Vallon V; Albinus M; Blach D
    J Pharmacol Exp Ther; 1998 Sep; 286(3):1215-21. PubMed ID: 9732381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Governance of arteriolar oscillation by ryanodine receptors.
    Takenaka T; Ohno Y; Hayashi K; Saruta T; Suzuki H
    Am J Physiol Regul Integr Comp Physiol; 2003 Jul; 285(1):R125-31. PubMed ID: 12793994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Juxtamedullary microvascular dysfunction during the hyperfiltration stage of diabetes mellitus.
    Ohishi K; Okwueze MI; Vari RC; Carmines PK
    Am J Physiol; 1994 Jul; 267(1 Pt 2):F99-105. PubMed ID: 8048571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Segmentally distinct effects of depolarization on intracellular [Ca2+] in renal arterioles.
    Carmines PK; Fowler BC; Bell PD
    Am J Physiol; 1993 Nov; 265(5 Pt 2):F677-85. PubMed ID: 8238547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.