BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 895848)

  • 1. Aflatoxin B -oxide generated by chemical or enzymic oxidation of aflatoxin B1 causes guanine substitution in nucleic acids.
    Martin CN; Garner RC
    Nature; 1977 Jun; 267(5614):863-5. PubMed ID: 895848
    [No Abstract]   [Full Text] [Related]  

  • 2. 2,3-Dihydro-2-(guan-7-yl)-3-hydroxy-aflatoxin B1, a major acid hydrolysis product of aflatoxin B1-DNA or -ribosomal RNA adducts formed in hepatic microsome-mediated reactions and in rat liver in vivo.
    Lin JK; Miller JA; Miller EC
    Cancer Res; 1977 Dec; 37(12):4430-8. PubMed ID: 922734
    [No Abstract]   [Full Text] [Related]  

  • 3. Reduced nicotinamide adenine dinucleotide phosphate-dependent formation of 2,3-dihydro-2,3-dihydroxyaflatoxin B1 from aflatoxin B1 by hepatic microsomes.
    Lin JK; Kennan KA; Miller EC; Miller JA
    Cancer Res; 1978 Aug; 38(8):2424-8. PubMed ID: 27299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic and non-enzymatic formation of free radicals from aflatoxin B1.
    Kodama M; Inoue F; Akao M
    Free Radic Res Commun; 1990; 10(3):137-42. PubMed ID: 2168856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism of a prototype mycotoxin, aflatoxin B1, and its genetic regulation.
    Gurtoo HL; Dahms R; Vaught JB
    Mycopathologia; 1978 Dec; 65(1-3):13-28. PubMed ID: 106281
    [No Abstract]   [Full Text] [Related]  

  • 6. Specificity of rabbit pulmonary cytochrome P-450 isozymes in the activation of several aromatic amines and aflatoxin B1.
    Robertson LG; Philpot RM; Zeiger E; Wolf CR
    Mol Pharmacol; 1981 Nov; 20(3):662-8. PubMed ID: 6799775
    [No Abstract]   [Full Text] [Related]  

  • 7. Structural identification of the major DNA adduct formed by aflatoxin B1 in vitro.
    Essigmann JM; Croy RG; Nadzan AM; Busby WF; Reinhold VN; Büchi G; Wogan GN
    Proc Natl Acad Sci U S A; 1977 May; 74(5):1870-4. PubMed ID: 266709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Various aspects of the effect of nutritional factors on the metabolism and biological action of aflatoxin B1 in the rat liver].
    Nikov PS; Parzian MS
    Vopr Med Khim; 1985; 31(4):94-9. PubMed ID: 3931351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The kinetics of aflatoxin B1 oxidation by human cDNA-expressed and human liver microsomal cytochromes P450 1A2 and 3A4.
    Gallagher EP; Kunze KL; Stapleton PL; Eaton DL
    Toxicol Appl Pharmacol; 1996 Dec; 141(2):595-606. PubMed ID: 8975785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical evidence for the formation of a reactive aflatoxin B1 metabolite, by hamster liver microsomes.
    Garner RC
    FEBS Lett; 1973 Nov; 36(3):261-4. PubMed ID: 4763306
    [No Abstract]   [Full Text] [Related]  

  • 11. Microsome-dependent binding of benzo(alpha)pyrene and aflatoxin B1 to DNA, and benzo(alpha)pyrene binding to aflatoxin-conjugated DNA.
    Alexandrov K; Frayssinet C
    Cancer Res; 1974 Dec; 34(12):3289-95. PubMed ID: 4154143
    [No Abstract]   [Full Text] [Related]  

  • 12. Differences in the effect of phenobarbital treatment on the in vitro metabolism of aflatoxin and aniline by duck and rat livers.
    Patterson DS; Roberts BA
    Biochem Pharmacol; 1971 Dec; 20(12):3377-83. PubMed ID: 5132884
    [No Abstract]   [Full Text] [Related]  

  • 13. The formation of 2,3-dihydro-2,3-dihydroxy aflatoxin B1 by the metabolism of aflatoxin B1 in vitro by rat liver microsomes.
    Neal GE; Colley PJ
    FEBS Lett; 1979 May; 101(2):382-6. PubMed ID: 36299
    [No Abstract]   [Full Text] [Related]  

  • 14. Evidence for cytochrome P-450NF, the nifedipine oxidase, being the principal enzyme involved in the bioactivation of aflatoxins in human liver.
    Shimada T; Guengerich FP
    Proc Natl Acad Sci U S A; 1989 Jan; 86(2):462-5. PubMed ID: 2492107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aflatoxin M1: in vitro preparation and comparative in vitro metabolism versus aflatoxin B1 in the rat and mouse.
    Rice DW; Hsieh DP
    Res Commun Chem Pathol Pharmacol; 1982 Mar; 35(3):467-90. PubMed ID: 6805048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro metabolic conversion of aflatoxins and benzo(alpha)pyrene to nucleic acid-binding metabolites.
    Gurtoo HL; Dave CV
    Cancer Res; 1975 Feb; 35(2):382-9. PubMed ID: 234034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of human microsomal and human complementary DNA-expressed cytochromes P4501A2 and P4503A4 in the bioactivation of aflatoxin B1.
    Gallagher EP; Wienkers LC; Stapleton PL; Kunze KL; Eaton DL
    Cancer Res; 1994 Jan; 54(1):101-8. PubMed ID: 8261428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation and deactivation of aflatoxin B1 in isolated rat hepatocytes.
    Ch'ih JJ; Lin T; Devlin TM
    Biochem Biophys Res Commun; 1983 Jan; 110(2):668-74. PubMed ID: 6404260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study on the metabolism and activation of aflatoxin B1 in nuclet, microsomes and reconstituted P-450 system of rat liver.
    Ueno Y; Yoshizawa H; Uchimaru R
    Dev Toxicol Environ Sci; 1980; 8():279-82. PubMed ID: 6796374
    [No Abstract]   [Full Text] [Related]  

  • 20. Preferential binding of aflatoxin B1 to the transcriptionally active regions of rat liver nucleolar chromatin in vivo and in vitro.
    Yu FL
    Carcinogenesis; 1983; 4(7):889-93. PubMed ID: 6409439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.