These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 895848)
1. Aflatoxin B -oxide generated by chemical or enzymic oxidation of aflatoxin B1 causes guanine substitution in nucleic acids. Martin CN; Garner RC Nature; 1977 Jun; 267(5614):863-5. PubMed ID: 895848 [No Abstract] [Full Text] [Related]
2. 2,3-Dihydro-2-(guan-7-yl)-3-hydroxy-aflatoxin B1, a major acid hydrolysis product of aflatoxin B1-DNA or -ribosomal RNA adducts formed in hepatic microsome-mediated reactions and in rat liver in vivo. Lin JK; Miller JA; Miller EC Cancer Res; 1977 Dec; 37(12):4430-8. PubMed ID: 922734 [No Abstract] [Full Text] [Related]
3. Reduced nicotinamide adenine dinucleotide phosphate-dependent formation of 2,3-dihydro-2,3-dihydroxyaflatoxin B1 from aflatoxin B1 by hepatic microsomes. Lin JK; Kennan KA; Miller EC; Miller JA Cancer Res; 1978 Aug; 38(8):2424-8. PubMed ID: 27299 [TBL] [Abstract][Full Text] [Related]
4. Enzymatic and non-enzymatic formation of free radicals from aflatoxin B1. Kodama M; Inoue F; Akao M Free Radic Res Commun; 1990; 10(3):137-42. PubMed ID: 2168856 [TBL] [Abstract][Full Text] [Related]
5. Metabolism of a prototype mycotoxin, aflatoxin B1, and its genetic regulation. Gurtoo HL; Dahms R; Vaught JB Mycopathologia; 1978 Dec; 65(1-3):13-28. PubMed ID: 106281 [No Abstract] [Full Text] [Related]
6. Specificity of rabbit pulmonary cytochrome P-450 isozymes in the activation of several aromatic amines and aflatoxin B1. Robertson LG; Philpot RM; Zeiger E; Wolf CR Mol Pharmacol; 1981 Nov; 20(3):662-8. PubMed ID: 6799775 [No Abstract] [Full Text] [Related]
7. Structural identification of the major DNA adduct formed by aflatoxin B1 in vitro. Essigmann JM; Croy RG; Nadzan AM; Busby WF; Reinhold VN; Büchi G; Wogan GN Proc Natl Acad Sci U S A; 1977 May; 74(5):1870-4. PubMed ID: 266709 [TBL] [Abstract][Full Text] [Related]
8. [Various aspects of the effect of nutritional factors on the metabolism and biological action of aflatoxin B1 in the rat liver]. Nikov PS; Parzian MS Vopr Med Khim; 1985; 31(4):94-9. PubMed ID: 3931351 [TBL] [Abstract][Full Text] [Related]
9. The kinetics of aflatoxin B1 oxidation by human cDNA-expressed and human liver microsomal cytochromes P450 1A2 and 3A4. Gallagher EP; Kunze KL; Stapleton PL; Eaton DL Toxicol Appl Pharmacol; 1996 Dec; 141(2):595-606. PubMed ID: 8975785 [TBL] [Abstract][Full Text] [Related]
10. Chemical evidence for the formation of a reactive aflatoxin B1 metabolite, by hamster liver microsomes. Garner RC FEBS Lett; 1973 Nov; 36(3):261-4. PubMed ID: 4763306 [No Abstract] [Full Text] [Related]
11. Microsome-dependent binding of benzo(alpha)pyrene and aflatoxin B1 to DNA, and benzo(alpha)pyrene binding to aflatoxin-conjugated DNA. Alexandrov K; Frayssinet C Cancer Res; 1974 Dec; 34(12):3289-95. PubMed ID: 4154143 [No Abstract] [Full Text] [Related]
12. Differences in the effect of phenobarbital treatment on the in vitro metabolism of aflatoxin and aniline by duck and rat livers. Patterson DS; Roberts BA Biochem Pharmacol; 1971 Dec; 20(12):3377-83. PubMed ID: 5132884 [No Abstract] [Full Text] [Related]
13. The formation of 2,3-dihydro-2,3-dihydroxy aflatoxin B1 by the metabolism of aflatoxin B1 in vitro by rat liver microsomes. Neal GE; Colley PJ FEBS Lett; 1979 May; 101(2):382-6. PubMed ID: 36299 [No Abstract] [Full Text] [Related]
14. Evidence for cytochrome P-450NF, the nifedipine oxidase, being the principal enzyme involved in the bioactivation of aflatoxins in human liver. Shimada T; Guengerich FP Proc Natl Acad Sci U S A; 1989 Jan; 86(2):462-5. PubMed ID: 2492107 [TBL] [Abstract][Full Text] [Related]
15. Aflatoxin M1: in vitro preparation and comparative in vitro metabolism versus aflatoxin B1 in the rat and mouse. Rice DW; Hsieh DP Res Commun Chem Pathol Pharmacol; 1982 Mar; 35(3):467-90. PubMed ID: 6805048 [TBL] [Abstract][Full Text] [Related]
16. In vitro metabolic conversion of aflatoxins and benzo(alpha)pyrene to nucleic acid-binding metabolites. Gurtoo HL; Dave CV Cancer Res; 1975 Feb; 35(2):382-9. PubMed ID: 234034 [TBL] [Abstract][Full Text] [Related]
17. Role of human microsomal and human complementary DNA-expressed cytochromes P4501A2 and P4503A4 in the bioactivation of aflatoxin B1. Gallagher EP; Wienkers LC; Stapleton PL; Kunze KL; Eaton DL Cancer Res; 1994 Jan; 54(1):101-8. PubMed ID: 8261428 [TBL] [Abstract][Full Text] [Related]
18. Activation and deactivation of aflatoxin B1 in isolated rat hepatocytes. Ch'ih JJ; Lin T; Devlin TM Biochem Biophys Res Commun; 1983 Jan; 110(2):668-74. PubMed ID: 6404260 [TBL] [Abstract][Full Text] [Related]
19. Comparative study on the metabolism and activation of aflatoxin B1 in nuclet, microsomes and reconstituted P-450 system of rat liver. Ueno Y; Yoshizawa H; Uchimaru R Dev Toxicol Environ Sci; 1980; 8():279-82. PubMed ID: 6796374 [No Abstract] [Full Text] [Related]
20. Preferential binding of aflatoxin B1 to the transcriptionally active regions of rat liver nucleolar chromatin in vivo and in vitro. Yu FL Carcinogenesis; 1983; 4(7):889-93. PubMed ID: 6409439 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]