These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 895872)

  • 1. 2,4-D plasmids and persistence.
    Pemberton JM; Fisher PR
    Nature; 1977 Aug; 268(5622):732-3. PubMed ID: 895872
    [No Abstract]   [Full Text] [Related]  

  • 2. Influence of environmental factors on 2,4-dichlorophenoxyacetic acid degradation by Pseudomonas cepacia isolated from peat.
    Greer CW; Hawari J; Samson R
    Arch Microbiol; 1990; 154(4):317-22. PubMed ID: 2244784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [New plasmids of herbicide 2,4-dichlorophenoxyacetic acid biodegradation].
    Ausméés NR; Kheĭnaru AL
    Genetika; 1990 Apr; 26(4):770-2. PubMed ID: 2373362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of specialized microbial strains in the treatment of industrial waste and in soil decontamination.
    Finn RK
    Experientia; 1983 Nov; 39(11):1231-6. PubMed ID: 6357840
    [No Abstract]   [Full Text] [Related]  

  • 5. Widespread occurrence of the tfd-II genes in soil bacteria revealed by nucleotide sequence analysis of 2,4-dichlorophenoxyacetic acid degradative plasmids pDB1 and p712.
    Kim DU; Kim MS; Lim JS; Ka JO
    Plasmid; 2013 May; 69(3):243-8. PubMed ID: 23376020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of competition in soil among 2,4-dichlorophenoxyacetic acid-degrading bacteria.
    Ka JO; Holben WE; Tiedje JM
    Appl Environ Microbiol; 1994 Apr; 60(4):1121-8. PubMed ID: 8017909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of enhanced biodegradation of 2,4-D and MCPA in a field soil following cessation of repeated herbicide applications.
    Smith AE; Aubin AJ
    Bull Environ Contam Toxicol; 1994 Jul; 53(1):7-11. PubMed ID: 8069077
    [No Abstract]   [Full Text] [Related]  

  • 8. Dual-bioaugmentation strategy to enhance remediation of cocontaminated soil.
    Roane TM; Josephson KL; Pepper IL
    Appl Environ Microbiol; 2001 Jul; 67(7):3208-15. PubMed ID: 11425743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of isomeric monochlorobenzoates and 2,4-dichlorophenoxyacetic acid by a constructed Pseudomonas sp.
    Sahasrabudhe AV; Modi VV
    Appl Microbiol Biotechnol; 1991 Jan; 34(4):556-7. PubMed ID: 1367232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction and application of chromosomally integrated lac-lux gene markers to monitor the fate of a 2,4-dichlorophenoxyacetic acid-degrading bacterium in contaminated soils.
    Masson L; Comeau Y; Brousseau R; Samson R; Greer C
    Microb Releases; 1993 Mar; 1(4):209-16. PubMed ID: 7506623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of 2,4-D and MCPA in soils of low pH.
    Torstensson NT
    Environ Qual Saf Suppl; 1975; 3():262-5. PubMed ID: 5271
    [No Abstract]   [Full Text] [Related]  

  • 12. Effect of glucose on the amount of bacteria mineralizing 2,4-dichlorophenoxyacetic acid in soil.
    Kunc F; Rybárová J
    Folia Microbiol (Praha); 1983; 28(1):54-6. PubMed ID: 6832659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of cell bioaugmentation and gene bioaugmentation in the remediation of co-contaminated soils.
    Pepper IL; Gentry TJ; Newby DT; Roane TM; Josephson KL
    Environ Health Perspect; 2002 Dec; 110 Suppl 6(Suppl 6):943-6. PubMed ID: 12634123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of eukaryotic microbiota in soil survival and catabolic performance of the 2,4-D herbicide degrading bacteria Cupriavidus necator JMP134.
    Manzano M; Morán AC; Tesser B; González B
    Antonie Van Leeuwenhoek; 2007 Feb; 91(2):115-26. PubMed ID: 17043913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradation of 2,4-dichlorophenoxyacetic acid by bacteria with highly antibiotic-resistant pattern isolated from wheat field soils in Kurdistan, Iran.
    Karami S; Maleki A; Karimi E; Poormazaheri H; Zandi S; Davari B; Salimi YZ; Gharibi F; Kalantar E
    Environ Monit Assess; 2016 Dec; 188(12):659. PubMed ID: 27832433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts of gene bioaugmentation with pJP4-harboring bacteria of 2,4-D-contaminated soil slurry on the indigenous microbial community.
    Inoue D; Yamazaki Y; Tsutsui H; Sei K; Soda S; Fujita M; Ike M
    Biodegradation; 2012 Apr; 23(2):263-76. PubMed ID: 21850504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Characteristics of natural strains of naphthalene-utilizing bacteria of the genus Pseudomonas].
    Levchuk AA; Vasilenko SL; Bulyga IM; Titok MA; Thomas KM
    Izv Akad Nauk Ser Biol; 2005; (2):162-7. PubMed ID: 16004276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A soil-based microbial biofilm exposed to 2,4-D: bacterial community development and establishment of conjugative plasmid pJP4.
    Aspray TJ; Hansen SK; Burns RG
    FEMS Microbiol Ecol; 2005 Oct; 54(2):317-27. PubMed ID: 16332330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for a dissimilatory plasmid in Azotobacter chroococcum.
    Balajee S; Mahadevan A
    FEMS Microbiol Lett; 1989 Nov; 53(1-2):223-7. PubMed ID: 2612888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ageing processes and soil microbial community effects on the biodegradation of soil (13)C-2,4-D nonextractable residues.
    Lerch TZ; Dignac MF; Nunan N; Barriuso E; Mariotti A
    Environ Pollut; 2009 Nov; 157(11):2985-93. PubMed ID: 19564065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.