These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 8959274)

  • 1. A mechanism for the decrease in stiffness of bioprosthetic heart valve tissues after cross-linking.
    Vesely I
    ASAIO J; 1996; 42(6):993-9. PubMed ID: 8959274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the bending behaviour of porcine xenograft leaflets and of natural aortic valve material: bending stiffness, neutral axis and shear measurements.
    Vesely I; Boughner D
    J Biomech; 1989; 22(6-7):655-71. PubMed ID: 2509479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural preload of aortic valve leaflet components during glutaraldehyde fixation: effects on tissue mechanics.
    Vesely I; Lozon A
    J Biomech; 1993 Feb; 26(2):121-31. PubMed ID: 8429055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of the shrinkage temperature of animal tissue for bioprosthetic heart valve application by differential scanning calorimetry.
    Loke WK; Khor E
    Biomaterials; 1995 Feb; 16(3):251-8. PubMed ID: 7749003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degeneration of bioprosthetic heart valve cusp and wall tissues is initiated during tissue preparation: an ultrastructural study.
    Simionescu DT; Lovekamp JJ; Vyavahare NR
    J Heart Valve Dis; 2003 Mar; 12(2):226-34. PubMed ID: 12701796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical properties of a porcine aortic valve fixed with a naturally occurring crosslinking agent.
    Sung HW; Chang Y; Chiu CT; Chen CN; Liang HC
    Biomaterials; 1999 Oct; 20(19):1759-72. PubMed ID: 10509186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of fixation back pressure and antimineralization treatment on the morphology of porcine aortic bioprosthetic valves.
    Flomenbaum MA; Schoen FJ
    J Thorac Cardiovasc Surg; 1993 Jan; 105(1):154-64. PubMed ID: 8419696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic glutaraldehyde fixation of a porcine aortic valve xenograft. I. Effect of fixation conditions on the final tissue viscoelastic properties.
    Duncan AC; Boughner D; Vesely I
    Biomaterials; 1996 Oct; 17(19):1849-56. PubMed ID: 8889064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical and ultrastructural comparison of cryopreservation and a novel cellular extraction of porcine aortic valve leaflets.
    Courtman DW; Pereira CA; Omar S; Langdon SE; Lee JM; Wilson GJ
    J Biomed Mater Res; 1995 Dec; 29(12):1507-16. PubMed ID: 8600141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the cross-linking characteristics of porcine heart valves fixed with glutaraldehyde or epoxy compounds.
    Sung HW; Shen SH; Tu R; Lin D; Hata C; Noishiki Y; Tomizawa Y; Quijano RC
    ASAIO J; 1993; 39(3):M532-6. PubMed ID: 8268592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracellular matrix degrading enzymes are active in porcine stentless aortic bioprosthetic heart valves.
    Simionescu DT; Lovekamp JJ; Vyavahare NR
    J Biomed Mater Res A; 2003 Sep; 66(4):755-63. PubMed ID: 12926026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is zero-pressure fixation of bioprosthetic valves truly stress free?
    Vesely I; Lozon A; Talman E
    J Thorac Cardiovasc Surg; 1993 Aug; 106(2):288-98. PubMed ID: 8341070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porcine aortic valve bioprostheses: morphologic and functional considerations.
    Hilbert SL; Ferrans VJ
    J Long Term Eff Med Implants; 1992; 2(2-3):99-112. PubMed ID: 10148319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anatomy of aortic heart valve leaflets: the influence of glutaraldehyde fixation on function.
    Christie GW
    Eur J Cardiothorac Surg; 1992; 6 Suppl 1():S25-32; discussion S33. PubMed ID: 1389275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porcine aortic wall flexibility. Fresh vs Denacol fixed vs glutaraldehyde fixed.
    Zhou J; Quintero LJ; Helmus MN; Lee C; Kafesjian R
    ASAIO J; 1997; 43(5):M470-5. PubMed ID: 9360087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycosaminoglycan-degrading enzymes in porcine aortic heart valves: implications for bioprosthetic heart valve degeneration.
    Simionescu DT; Lovekamp JJ; Vyavahare NR
    J Heart Valve Dis; 2003 Mar; 12(2):217-25. PubMed ID: 12701795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of fixation conditions on the performance of glutaraldehyde-treated porcine aortic valves: towards a more scientific basis.
    Broom ND; Thomson FJ
    Thorax; 1979 Apr; 34(2):166-76. PubMed ID: 113899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viscoelasticity of dynamically fixed bioprosthetic valves. II. Effect of glutaraldehyde concentration.
    Duncan AC; Boughner D; Vesely I
    J Thorac Cardiovasc Surg; 1997 Feb; 113(2):302-10. PubMed ID: 9040624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutaraldehyde fixation alters the internal shear properties of porcine aortic heart valve tissue.
    Talman EA; Boughner DR
    Ann Thorac Surg; 1995 Aug; 60(2 Suppl):S369-73. PubMed ID: 7646190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue buckling as a mechanism of bioprosthetic valve failure.
    Vesely I; Boughner D; Song T
    Ann Thorac Surg; 1988 Sep; 46(3):302-8. PubMed ID: 3137903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.