These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 8959488)

  • 1. Phagocytic uptake and cytotoxicity of solid lipid nanoparticles (SLN) sterically stabilized with poloxamine 908 and poloxamer 407.
    Müller RH; Maassen S; Weyhers H; Mehnert W
    J Drug Target; 1996; 4(3):161-70. PubMed ID: 8959488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein adsorption patterns on poloxamer- and poloxamine-stabilized solid lipid nanoparticles (SLN).
    Göppert TM; Müller RH
    Eur J Pharm Biopharm; 2005 Aug; 60(3):361-72. PubMed ID: 15996577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytotoxicity studies of Dynasan 114 solid lipid nanoparticles (SLN) on RAW 264.7 macrophages-impact of phagocytosis on viability and cytokine production.
    Olbrich C; Schöler N; Tabatt K; Kayser O; Müller RH
    J Pharm Pharmacol; 2004 Jul; 56(7):883-91. PubMed ID: 15233867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the surface properties of low contact angle surfactants on the body distribution of 14C-poly(methyl methacrylate) nanoparticles.
    Tröster SD; Kreuter J
    J Microencapsul; 1992; 9(1):19-28. PubMed ID: 1613640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The organ uptake of intravenously administered colloidal particles can be altered using a non-ionic surfactant (Poloxamer 338).
    Illum L; Davis SS
    FEBS Lett; 1984 Feb; 167(1):79-82. PubMed ID: 6698206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasma protein adsorption of Tween 80- and poloxamer 188-stabilized solid lipid nanoparticles.
    Göppert TM; Müller RH
    J Drug Target; 2003 May; 11(4):225-31. PubMed ID: 14578109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct suppression of phagocytosis by amphipathic polymeric surfactants.
    Watrous-Peltier N; Uhl J; Steel V; Brophy L; Merisko-Liversidge E
    Pharm Res; 1992 Sep; 9(9):1177-83. PubMed ID: 1409401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytotoxicity of solid lipid nanoparticles as a function of the lipid matrix and the surfactant.
    Müller RH; Rühl D; Runge S; Schulze-Forster K; Mehnert W
    Pharm Res; 1997 Apr; 14(4):458-62. PubMed ID: 9144731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption kinetics of plasma proteins on solid lipid nanoparticles for drug targeting.
    Göppert TM; Müller RH
    Int J Pharm; 2005 Sep; 302(1-2):172-86. PubMed ID: 16098695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of surface-modified solid lipid nanocontainers formulated with a heterolipid-templated homolipid.
    Attama AA; Müller-Goymann CC
    Int J Pharm; 2007 Apr; 334(1-2):179-89. PubMed ID: 17140752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and evaluation of lipid nanoparticles for camptothecin delivery: a comparison of solid lipid nanoparticles, nanostructured lipid carriers, and lipid emulsion.
    Huang ZR; Hua SC; Yang YL; Fang JY
    Acta Pharmacol Sin; 2008 Sep; 29(9):1094-102. PubMed ID: 18718178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the surfactant concentration on the body distribution of nanoparticles.
    Araujo L; Löbenberg R; Kreuter J
    J Drug Target; 1999; 6(5):373-85. PubMed ID: 10342385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Preparation of solid lipid nanoparticles loaded with all-trans retinoic acid and their evaluation in vitro and in vivo].
    Hu LD; Tang X; Cui FD
    Yao Xue Xue Bao; 2005 Jan; 40(1):71-5. PubMed ID: 15881775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaling up feasibility of the production of solid lipid nanoparticles (SLN).
    Gohla SH; Dingler A
    Pharmazie; 2001 Jan; 56(1):61-3. PubMed ID: 11210672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time evidence of surface modification at polystyrene lattices by poloxamine 908 in the presence of serum: in vivo conversion of macrophage-prone nanoparticles to stealth entities by poloxamine 908.
    Moghimi SM; Pavey KD; Hunter AC
    FEBS Lett; 2003 Jul; 547(1-3):177-82. PubMed ID: 12860409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Employment of cationic solid-lipid nanoparticles as RNA carriers.
    Montana G; Bondì ML; Carrotta R; Picone P; Craparo EF; San Biagio PL; Giammona G; Di Carlo M
    Bioconjug Chem; 2007; 18(2):302-8. PubMed ID: 17253655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclosporine-loaded solid lipid nanoparticles (SLN): drug-lipid physicochemical interactions and characterization of drug incorporation.
    Müller RH; Runge SA; Ravelli V; Thünemann AF; Mehnert W; Souto EB
    Eur J Pharm Biopharm; 2008 Mar; 68(3):535-44. PubMed ID: 17804210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol.
    Teskac K; Kristl J
    Int J Pharm; 2010 May; 390(1):61-9. PubMed ID: 19833178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability of lipid excipients in solid lipid nanoparticles.
    Radomska-Soukharev A
    Adv Drug Deliv Rev; 2007 Jul; 59(6):411-8. PubMed ID: 17553589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterisation of surface-modified solid lipid nanoparticles (SLN): influence of lecithin and nonionic emulsifier.
    Schubert MA; Müller-Goymann CC
    Eur J Pharm Biopharm; 2005 Sep; 61(1-2):77-86. PubMed ID: 16011893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.