BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 8961188)

  • 1. Sensitivity of vagal mucosal afferents to cholecystokinin and its role in afferent signal transduction in the rat.
    Richards W; Hillsley K; Eastwood C; Grundy D
    J Physiol; 1996 Dec; 497 ( Pt 2)(Pt 2):473-81. PubMed ID: 8961188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of endogenous cholecystokinin in the sensory transduction of luminal nutrient signals in the rat jejunum.
    Eastwood C; Maubach K; Kirkup AJ; Grundy D
    Neurosci Lett; 1998 Oct; 254(3):145-8. PubMed ID: 10214978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chylomicron components activate duodenal vagal afferents via a cholecystokinin A receptor-mediated pathway to inhibit gastric motor function in the rat.
    Glatzle J; Wang Y; Adelson DW; Kalogeris TJ; Zittel TT; Tso P; Wei JY; Raybould HE
    J Physiol; 2003 Jul; 550(Pt 2):657-64. PubMed ID: 12766241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Serotonin and cholecystokinin activate different populations of rat mesenteric vagal afferents.
    Hillsley K; Grundy D
    Neurosci Lett; 1998 Oct; 255(2):63-6. PubMed ID: 9835215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endogenous CCK disrupts the MMC pattern via capsaicin-sensitive vagal afferent fibers in the rat.
    Rodríguez-Membrilla A; Vergara P
    Am J Physiol; 1997 Jan; 272(1 Pt 1):G100-5. PubMed ID: 9038882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vagal afferent responses to fatty acids of different chain length in the rat.
    Lal S; Kirkup AJ; Brunsden AM; Thompson DG; Grundy D
    Am J Physiol Gastrointest Liver Physiol; 2001 Oct; 281(4):G907-15. PubMed ID: 11557510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CCK-8 activates hepatic vagal C-fiber afferents.
    Cox JE; Randich A
    Brain Res; 1997 Nov; 776(1-2):189-94. PubMed ID: 9439812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prolonged intestinal afferent nerve discharge in response to cholecystokinin-58 compared to cholecystokinin-8 in rats.
    Kreis ME; Zittel TT; Raybould HE; Reeve JR; Grundy D
    Neurosci Lett; 1997 Jul; 230(2):89-92. PubMed ID: 9259471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endogenous cholecystokinin stimulates pancreatic enzyme secretion via vagal afferent pathway in rats.
    Li Y; Owyang C
    Gastroenterology; 1994 Aug; 107(2):525-31. PubMed ID: 8039628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacological dissociation of responses to CCK and gastric loads in rat mechanosensitive vagal afferents.
    Schwartz GJ; McHugh PR; Moran TH
    Am J Physiol; 1994 Jul; 267(1 Pt 2):R303-8. PubMed ID: 8048636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-affinity CCK-A receptors on the vagus nerve mediate CCK-stimulated pancreatic secretion in rats.
    Li Y; Hao Y; Owyang C
    Am J Physiol; 1997 Sep; 273(3 Pt 1):G679-85. PubMed ID: 9316472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intestinal serotonin acts as a paracrine substance to mediate vagal signal transmission evoked by luminal factors in the rat.
    Zhu JX; Zhu XY; Owyang C; Li Y
    J Physiol; 2001 Feb; 530(Pt 3):431-42. PubMed ID: 11158274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response of the gastric vagal afferent activity to cholecystokinin in rats lacking type A cholecystokinin receptors.
    Kurosawa M; Bucinskaite V; Taniguchi T; Miyasaka K; Funakoshi A; Lundeberg T
    J Auton Nerv Syst; 1999 Jan; 75(1):51-9. PubMed ID: 9935269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity to 5-hydroxytryptamine in different afferent subpopulations within mesenteric nerves supplying the rat jejunum.
    Hillsley K; Grundy D
    J Physiol; 1998 Jun; 509 ( Pt 3)(Pt 3):717-27. PubMed ID: 9596794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cholecystokinin selectively affects presympathetic vasomotor neurons and sympathetic vasomotor outflow.
    Sartor DM; Verberne AJ
    Am J Physiol Regul Integr Comp Physiol; 2002 Apr; 282(4):R1174-84. PubMed ID: 11893623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vagal afferent and efferent contributions to the inhibition of food intake by cholecystokinin.
    Moran TH; Baldessarini AR; Salorio CF; Lowery T; Schwartz GJ
    Am J Physiol; 1997 Apr; 272(4 Pt 2):R1245-51. PubMed ID: 9140026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesenteric afferent sensitivity to cholecystokinin and 5-hydroxytryptamine.
    Grundy D; Hillsley K; Kirkup AJ; Richards W
    Dtsch Tierarztl Wochenschr; 1998 Dec; 105(12):466-8. PubMed ID: 9932018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of vagal afferent responses to duodenal loads and exogenous CCK in rats.
    Schwartz GJ; Tougas G; Moran TH
    Peptides; 1995; 16(4):707-11. PubMed ID: 7479306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The vagal afferent pathway does not play a major role in the induction of satiety by intestinal fatty acid in rats.
    Ogawa N; Yamaguchi H; Shimbara T; Toshinai K; Kakutani M; Yonemori F; Nakazato M
    Neurosci Lett; 2008 Mar; 433(1):38-42. PubMed ID: 18248897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Apolipoprotein A-IV stimulates duodenal vagal afferent activity to inhibit gastric motility via a CCK1 pathway.
    Glatzle J; Darcel N; Rechs AJ; Kalogeris TJ; Tso P; Raybould HE
    Am J Physiol Regul Integr Comp Physiol; 2004 Aug; 287(2):R354-9. PubMed ID: 15117731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.