These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 8961294)

  • 1. Dendritic Ca2+ response in cercal sensory interneurons of the cricket Gryllus bimaculatus.
    Ogawa H; Baba Y; Oka K
    Neurosci Lett; 1996 Nov; 219(1):21-4. PubMed ID: 8961294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dendritic calcium accumulation regulates wind sensitivity via short-term depression at cercal sensory-to-giant interneuron synapses in the cricket.
    Ogawa H; Baba Y; Oka K
    J Neurobiol; 2001 Mar; 46(4):301-13. PubMed ID: 11180157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spike-triggered dendritic calcium transients depend on synaptic activity in the cricket giant interneurons.
    Ogawa H; Baba Y; Oka K
    J Neurobiol; 2002 Feb; 50(3):234-44. PubMed ID: 11810638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direction of action potential propagation influences calcium increases in distal dendrites of the cricket giant interneurons.
    Ogawa H; Baba Y; Oka K
    J Neurobiol; 2002 Oct; 53(1):44-56. PubMed ID: 12360582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cholinergic neurotransmission from mechanosensory afferents to giant interneurons in the terminal abdominal ganglion of the cricket Gryllus bimaculatus.
    Yono O; Aonuma H
    Zoolog Sci; 2008 May; 25(5):517-25. PubMed ID: 18558805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dendritic design implements algorithm for synaptic extraction of sensory information.
    Ogawa H; Cummins GI; Jacobs GA; Oka K
    J Neurosci; 2008 Apr; 28(18):4592-603. PubMed ID: 18448635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca2+ imaging of cricket protocerebrum responses to air current stimulation.
    Ogawa H; Kajita Y
    Neurosci Lett; 2015 Jan; 584():282-6. PubMed ID: 25450140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualization of ensemble activity patterns of mechanosensory afferents in the cricket cercal sensory system with calcium imaging.
    Ogawa H; Cummins GI; Jacobs GA; Miller JP
    J Neurobiol; 2006 Feb; 66(3):293-307. PubMed ID: 16329129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrative mechanisms controlling directional sensitivity of an identified sensory interneuron.
    Jacobs GA; Miller JP; Murphey RK
    J Neurosci; 1986 Aug; 6(8):2298-311. PubMed ID: 3746411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional recoveries of giant interneurons in the early period after unilateral cercal ablation in the cricket Gryllus bimaculatus.
    Kanou M; Kuroishi H
    Zoolog Sci; 2008 Sep; 25(9):931-6. PubMed ID: 19267603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anatomy and physiology of identified wind-sensitive local interneurons in the cricket cercal sensory system.
    Bodnar DA; Miller JP; Jacobs GA
    J Comp Physiol A; 1991 May; 168(5):553-64. PubMed ID: 1920156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directional sensitivity of dendritic calcium responses to wind stimuli in the cricket giant interneuron.
    Ogawa H; Baba Y; Oka K
    Neurosci Lett; 2004 Apr; 358(3):185-8. PubMed ID: 15039112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cercal sensory system and giant interneurons in Gryllodes sigillatus.
    Kanou M; Nawae M; Kuroishi H
    Zoolog Sci; 2006 Apr; 23(4):365-73. PubMed ID: 16702770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dendritic Ca2+ transient increase evoked by wind stimulus in the cricket giant interneuron.
    Ogawa H; Baba Y; Oka K
    Neurosci Lett; 1999 Nov; 275(1):61-4. PubMed ID: 10554985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spike-dependent calcium influx in dendrites of the cricket giant interneuron.
    Ogawa H; Baba Y; Oka K
    J Neurobiol; 2000 Jul; 44(1):45-56. PubMed ID: 10880131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extraction of sensory parameters from a neural map by primary sensory interneurons.
    Jacobs GA; Theunissen FE
    J Neurosci; 2000 Apr; 20(8):2934-43. PubMed ID: 10751446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corollary discharge inhibition of wind-sensitive cercal giant interneurons in the singing field cricket.
    Schöneich S; Hedwig B
    J Neurophysiol; 2015 Jan; 113(1):390-9. PubMed ID: 25318763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Information theoretic analysis of dynamical encoding by four identified primary sensory interneurons in the cricket cercal system.
    Theunissen F; Roddey JC; Stufflebeam S; Clague H; Miller JP
    J Neurophysiol; 1996 Apr; 75(4):1345-64. PubMed ID: 8727382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excitatory influence of wind-sensitive local interneurons on an ascending interneuron in the cricket cercal sensory system.
    Bodnar DA
    J Comp Physiol A; 1993 May; 172(5):641-51. PubMed ID: 8331608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Receptive fields of cricket giant interneurones are related to their dendritic structure.
    Bacon JP; Murphey RK
    J Physiol; 1984 Jul; 352():601-23. PubMed ID: 6747901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.