These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 8961347)

  • 21. HYPROSP II--a knowledge-based hybrid method for protein secondary structure prediction based on local prediction confidence.
    Lin HN; Chang JM; Wu KP; Sung TY; Hsu WL
    Bioinformatics; 2005 Aug; 21(15):3227-33. PubMed ID: 15932901
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling protein loops with knowledge-based prediction of sequence-structure alignment.
    Peng HP; Yang AS
    Bioinformatics; 2007 Nov; 23(21):2836-42. PubMed ID: 17827204
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving homology models for protein-ligand binding sites.
    Kauffman C; Rangwala H; Karypis G
    Comput Syst Bioinformatics Conf; 2008; 7():211-22. PubMed ID: 19642282
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inverse protein folding by the residue pair preference profile method: estimating the correctness of alignments of structurally compatible sequences.
    Wilmanns M; Eisenberg D
    Protein Eng; 1995 Jul; 8(7):627-39. PubMed ID: 8577692
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein contact prediction using patterns of correlation.
    Hamilton N; Burrage K; Ragan MA; Huber T
    Proteins; 2004 Sep; 56(4):679-84. PubMed ID: 15281121
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Better prediction of protein contact number using a support vector regression analysis of amino acid sequence.
    Yuan Z
    BMC Bioinformatics; 2005 Oct; 6():248. PubMed ID: 16221309
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of functional specificity determinants from protein sequences using log-likelihood ratios.
    Pei J; Cai W; Kinch LN; Grishin NV
    Bioinformatics; 2006 Jan; 22(2):164-71. PubMed ID: 16278237
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting disulfide connectivity from protein sequence using multiple sequence feature vectors and secondary structure.
    Song J; Yuan Z; Tan H; Huber T; Burrage K
    Bioinformatics; 2007 Dec; 23(23):3147-54. PubMed ID: 17942444
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis and prediction of DNA-binding proteins and their binding residues based on composition, sequence and structural information.
    Ahmad S; Gromiha MM; Sarai A
    Bioinformatics; 2004 Mar; 20(4):477-86. PubMed ID: 14990443
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fold recognition by predicted alignment accuracy.
    Xu J
    IEEE/ACM Trans Comput Biol Bioinform; 2005; 2(2):157-65. PubMed ID: 17044180
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiple sequence threading: an analysis of alignment quality and stability.
    Taylor WR
    J Mol Biol; 1997 Jun; 269(5):902-43. PubMed ID: 9223650
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An introduction to protein contact prediction.
    Hamilton N; Huber T
    Methods Mol Biol; 2008; 453():87-104. PubMed ID: 18712298
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein threading using PROSPECT: design and evaluation.
    Xu Y; Xu D
    Proteins; 2000 Aug; 40(3):343-54. PubMed ID: 10861926
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced recognition of protein transmembrane domains with prediction-based structural profiles.
    Cao B; Porollo A; Adamczak R; Jarrell M; Meller J
    Bioinformatics; 2006 Feb; 22(3):303-9. PubMed ID: 16293670
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved method for predicting beta-turn using support vector machine.
    Zhang Q; Yoon S; Welsh WJ
    Bioinformatics; 2005 May; 21(10):2370-4. PubMed ID: 15797917
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of protein structure by evaluation of sequence-structure fitness. Aligning sequences to contact profiles derived from three-dimensional structures.
    Ouzounis C; Sander C; Scharf M; Schneider R
    J Mol Biol; 1993 Aug; 232(3):805-25. PubMed ID: 8355272
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments.
    Jones DT; Buchan DW; Cozzetto D; Pontil M
    Bioinformatics; 2012 Jan; 28(2):184-90. PubMed ID: 22101153
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combined multiple sequence reduced protein model approach to predict the tertiary structure of small proteins.
    Ortiz AR; Kolinski A; Skolnick J
    Pac Symp Biocomput; 1998; ():377-88. PubMed ID: 9697197
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-RELIEF: a method to recognize specificity determining residues from multiple sequence alignments using a Machine-Learning approach for feature weighting.
    Ye K; Feenstra KA; Heringa J; Ijzerman AP; Marchiori E
    Bioinformatics; 2008 Jan; 24(1):18-25. PubMed ID: 18024975
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new approach to prediction of short-range conformational propensities in proteins.
    Gront D; Kolinski A
    Bioinformatics; 2005 Apr; 21(7):981-7. PubMed ID: 15509604
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.