These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 8961961)
1. A low-barrier hydrogen bond in subtilisin: 1H and 15N NMR studies with peptidyl trifluoromethyl ketones. Halkides CJ; Wu YQ; Murray CJ Biochemistry; 1996 Dec; 35(49):15941-8. PubMed ID: 8961961 [TBL] [Abstract][Full Text] [Related]
2. Correlations of the basicity of His 57 with transition state analogue binding, substrate reactivity, and the strength of the low-barrier hydrogen bond in chymotrypsin. Lin J; Cassidy CS; Frey PA Biochemistry; 1998 Aug; 37(34):11940-8. PubMed ID: 9718318 [TBL] [Abstract][Full Text] [Related]
3. NMR studies of the role of hydrogen bonding in the mechanism of triosephosphate isomerase. Harris TK; Abeygunawardana C; Mildvan AS Biochemistry; 1997 Dec; 36(48):14661-75. PubMed ID: 9398185 [TBL] [Abstract][Full Text] [Related]
4. The deuterium isotope effect on the NMR signal of the low-barrier hydrogen bond in a transition-state analog complex of chymotrypsin. Cassidy CS; Lin J; Frey PA Biochem Biophys Res Commun; 2000 Jul; 273(2):789-92. PubMed ID: 10873682 [TBL] [Abstract][Full Text] [Related]
5. A new concept for the mechanism of action of chymotrypsin: the role of the low-barrier hydrogen bond. Cassidy CS; Lin J; Frey PA Biochemistry; 1997 Apr; 36(15):4576-84. PubMed ID: 9109667 [TBL] [Abstract][Full Text] [Related]
6. Protonation-state dependence of hydrogen bond strengths and exchange rates in a serine protease catalytic triad: bovine chymotrypsinogen A. Markley JL; Westler WM Biochemistry; 1996 Aug; 35(34):11092-7. PubMed ID: 8780512 [TBL] [Abstract][Full Text] [Related]
7. 15N and 1H NMR spectroscopy of the catalytic histidine in chloromethyl ketone-inhibited complexes of serine proteases. Tsilikounas E; Rao T; Gutheil WG; Bachovchin WW Biochemistry; 1996 Feb; 35(7):2437-44. PubMed ID: 8652587 [TBL] [Abstract][Full Text] [Related]
8. Identification of histidine tautomers in proteins by 2D 1H/13C(delta2) one-bond correlated NMR. Sudmeier JL; Bradshaw EM; Haddad KE; Day RM; Thalhauser CJ; Bullock PA; Bachovchin WW J Am Chem Soc; 2003 Jul; 125(28):8430-1. PubMed ID: 12848537 [TBL] [Abstract][Full Text] [Related]
9. Hydrogen bonding at the active site of delta 5-3-ketosteroid isomerase. Zhao Q; Abeygunawardana C; Gittis AG; Mildvan AS Biochemistry; 1997 Dec; 36(48):14616-26. PubMed ID: 9398180 [TBL] [Abstract][Full Text] [Related]
10. Correlation of low-barrier hydrogen bonding and oxyanion binding in transition state analogue complexes of chymotrypsin. Neidhart D; Wei Y; Cassidy C; Lin J; Cleland WW; Frey PA Biochemistry; 2001 Feb; 40(8):2439-47. PubMed ID: 11327865 [TBL] [Abstract][Full Text] [Related]
14. Fractionation factors and activation energies for exchange of the low barrier hydrogen bonding proton in peptidyl trifluoromethyl ketone complexes of chymotrypsin. Lin J; Westler WM; Cleland WW; Markley JL; Frey PA Proc Natl Acad Sci U S A; 1998 Dec; 95(25):14664-8. PubMed ID: 9843946 [TBL] [Abstract][Full Text] [Related]
15. The 0.78 A structure of a serine protease: Bacillus lentus subtilisin. Kuhn P; Knapp M; Soltis SM; Ganshaw G; Thoene M; Bott R Biochemistry; 1998 Sep; 37(39):13446-52. PubMed ID: 9753430 [TBL] [Abstract][Full Text] [Related]
16. The low barrier hydrogen bond (LBHB) proposal revisited: the case of the Asp... His pair in serine proteases. Schutz CN; Warshel A Proteins; 2004 May; 55(3):711-23. PubMed ID: 15103633 [TBL] [Abstract][Full Text] [Related]
17. 13C NMR study of how the oxyanion pKa values of subtilisin and chymotrypsin tetrahedral adducts are affected by different amino acid residues binding in enzyme subsites S1-S4. O'Sullivan DB; O'Connell TP; Mahon MM; Koenig A; Milne JJ; Fitzpatrick TB; Malthouse JP Biochemistry; 1999 May; 38(19):6187-94. PubMed ID: 10320347 [TBL] [Abstract][Full Text] [Related]
18. NMR study of the inhibition of pepsin by glyoxal inhibitors: mechanism of tetrahedral intermediate stabilization by the aspartyl proteases. Cosgrove S; Rogers L; Hewage CM; Malthouse JP Biochemistry; 2007 Oct; 46(39):11205-15. PubMed ID: 17824620 [TBL] [Abstract][Full Text] [Related]
19. Do enzymes change the nature of transition states? Mapping the transition state for general acid-base catalysis of a serine protease. Bott RR; Chan G; Domingo B; Ganshaw G; Hsia CY; Knapp M; Murray CJ Biochemistry; 2003 Sep; 42(36):10545-53. PubMed ID: 12962477 [TBL] [Abstract][Full Text] [Related]
20. Differences in binding modes of enantiomers of 1-acetamido boronic acid based protease inhibitors: crystal structures of gamma-chymotrypsin and subtilisin Carlsberg complexes. Stoll VS; Eger BT; Hynes RC; Martichonok V; Jones JB; Pai EF Biochemistry; 1998 Jan; 37(2):451-62. PubMed ID: 9425066 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]