BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 8962066)

  • 21. Locking the ATP-operated clamp of DNA gyrase: probing the mechanism of strand passage.
    Williams NL; Howells AJ; Maxwell A
    J Mol Biol; 2001 Mar; 306(5):969-84. PubMed ID: 11237612
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adenosine 5'-O-(3-thio)triphosphate (ATPgammaS) promotes positive supercoiling of DNA by T. maritima reverse gyrase.
    Jungblut SP; Klostermeier D
    J Mol Biol; 2007 Aug; 371(1):197-209. PubMed ID: 17560602
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The C-terminal domain of the Escherichia coli DNA gyrase A subunit is a DNA-binding protein.
    Reece RJ; Maxwell A
    Nucleic Acids Res; 1991 Apr; 19(7):1399-405. PubMed ID: 1851291
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Mycobacterium smegmatis gyrase B specific monoclonal antibody reveals association of gyrase A and B subunits in the cell.
    Manjunatha UH; Somesh BP; Nagaraja V; Visweswariah SS
    FEMS Microbiol Lett; 2001 Jan; 194(1):87-92. PubMed ID: 11150671
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanisms for defining supercoiling set point of DNA gyrase orthologs: II. The shape of the GyrA subunit C-terminal domain (CTD) is not a sole determinant for controlling supercoiling efficiency.
    Tretter EM; Berger JM
    J Biol Chem; 2012 May; 287(22):18645-54. PubMed ID: 22457352
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Interactions of subunits of DNA gyrase].
    Bogdanova ES; Mirkin SM; Shmerling ZhG
    Mol Biol (Mosk); 1982; 16(5):1019-25. PubMed ID: 6292700
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of DNA gyrase subunits in synthesis of bacteriophage phi X174 viral DNA.
    Hamatake RK; Mukai R; Hayashi M
    Proc Natl Acad Sci U S A; 1981 Mar; 78(3):1532-6. PubMed ID: 6262812
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism of DNA gyrase-mediated illegitimate recombination: characterization of Escherichia coli gyrA mutations that confer hyper-recombination phenotype.
    Ashizawa Y; Yokochi T; Ogata Y; Shobuike Y; Kato J; Ikeda H
    J Mol Biol; 1999 Jun; 289(3):447-58. PubMed ID: 10356321
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Purification of a DNA topoisomerase II from the hyperthermophilic archaeon Sulfolobus shibatae. A thermostable enzyme with both bacterial and eucaryal features.
    Bergerat A; Gadelle D; Forterre P
    J Biol Chem; 1994 Nov; 269(44):27663-9. PubMed ID: 7961685
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA gyrase: structure and function.
    Reece RJ; Maxwell A
    Crit Rev Biochem Mol Biol; 1991; 26(3-4):335-75. PubMed ID: 1657531
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Peptides based on CcdB protein as novel inhibitors of bacterial topoisomerases.
    Trovatti E; Cotrim CA; Garrido SS; Barros RS; Marchetto R
    Bioorg Med Chem Lett; 2008 Dec; 18(23):6161-4. PubMed ID: 18938079
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energy coupling in Escherichia coli DNA gyrase: the relationship between nucleotide binding, strand passage, and DNA supercoiling.
    Bates AD; O'Dea MH; Gellert M
    Biochemistry; 1996 Feb; 35(5):1408-16. PubMed ID: 8634270
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression in Escherichia coli of Y5-mutant and N-terminal domain-deleted DNA gyrase B proteins affects strongly plasmid maintenance.
    Brino L; Mousli M; Oudet P; Weiss E
    Plasmid; 1997; 38(3):188-201. PubMed ID: 9435021
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Topoisomerase IV, alone, unknots DNA in E. coli.
    Deibler RW; Rahmati S; Zechiedrich EL
    Genes Dev; 2001 Mar; 15(6):748-61. PubMed ID: 11274059
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reverse gyrase: a helicase-like domain and a type I topoisomerase in the same polypeptide.
    Confalonieri F; Elie C; Nadal M; de La Tour C; Forterre P; Duguet M
    Proc Natl Acad Sci U S A; 1993 May; 90(10):4753-7. PubMed ID: 8389456
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conformational changes in DNA gyrase revealed by limited proteolysis.
    Kampranis SC; Maxwell A
    J Biol Chem; 1998 Aug; 273(35):22606-14. PubMed ID: 9712889
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Asymmetric removal of supercoils suggests how topoisomerase II simplifies DNA topology.
    Trigueros S; Salceda J; Bermúdez I; Fernández X; Roca J
    J Mol Biol; 2004 Jan; 335(3):723-31. PubMed ID: 14687569
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increased sensitivity to quinolone antibacterials can be engineered in human topoisomerase IIalpha by selective mutagenesis.
    Hammonds TR; Foster SR; Maxwell A
    J Mol Biol; 2000 Jul; 300(3):481-91. PubMed ID: 10884345
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mapping the topography of DNA wrapped around gyrase by nucleolytic and chemical probing of complexes of unique DNA sequences.
    Kirkegaard K; Wang JC
    Cell; 1981 Mar; 23(3):721-9. PubMed ID: 6261954
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The mechanism of negative DNA supercoiling: a cascade of DNA-induced conformational changes prepares gyrase for strand passage.
    Gubaev A; Klostermeier D
    DNA Repair (Amst); 2014 Apr; 16():23-34. PubMed ID: 24674625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.