These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 8962083)

  • 1. A global two component signal transduction system that integrates the control of photosynthesis, carbon dioxide assimilation, and nitrogen fixation.
    Joshi HM; Tabita FR
    Proc Natl Acad Sci U S A; 1996 Dec; 93(25):14515-20. PubMed ID: 8962083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maintenance and control of redox poise in Rhodobacter capsulatus strains deficient in the Calvin-Benson-Bassham pathway.
    Tichi MA; Tabita FR
    Arch Microbiol; 2000 Nov; 174(5):322-33. PubMed ID: 11131022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphoribulokinase mediates nitrogenase-induced carbon dioxide fixation gene repression in Rhodobacter sphaeroides.
    Farmer RM; Tabita FR
    Microbiology (Reading); 2015 Nov; 161(11):2184-91. PubMed ID: 26306848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photolithoautotrophic growth and control of CO2 fixation in Rhodobacter sphaeroides and Rhodospirillum rubrum in the absence of ribulose bisphosphate carboxylase-oxygenase.
    Wang X; Modak HV; Tabita FR
    J Bacteriol; 1993 Nov; 175(21):7109-14. PubMed ID: 8226655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential expression of the CO2 fixation operons of Rhodobacter sphaeroides by the Prr/Reg two-component system during chemoautotrophic growth.
    Gibson JL; Dubbs JM; Tabita FR
    J Bacteriol; 2002 Dec; 184(23):6654-64. PubMed ID: 12426354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrative control of carbon, nitrogen, hydrogen, and sulfur metabolism: the central role of the Calvin-Benson-Bassham cycle.
    Laguna R; Joshi GS; Dangel AW; Luther AK; Tabita FR
    Adv Exp Med Biol; 2010; 675():265-71. PubMed ID: 20532746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox homeostasis phenotypes in RubisCO-deficient Rhodobacter sphaeroides via ensemble modeling.
    Rizk ML; Laguna R; Smith KM; Tabita FR; Liao JC
    Biotechnol Prog; 2011; 27(1):15-22. PubMed ID: 20939096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A global signal transduction system regulates aerobic and anaerobic CO2 fixation in Rhodobacter sphaeroides.
    Qian Y; Tabita FR
    J Bacteriol; 1996 Jan; 178(1):12-8. PubMed ID: 8550404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulators of nonsulfur purple phototrophic bacteria and the interactive control of CO2 assimilation, nitrogen fixation, hydrogen metabolism and energy generation.
    Dubbs JM; Tabita FR
    FEMS Microbiol Rev; 2004 Jun; 28(3):353-76. PubMed ID: 15449608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of carbon monoxide dehydrogenase to facilitate redox balancing in a ribulose bisphosphate carboxylase/oxygenase-deficient mutant strain of Rhodospirillum rubrum.
    Joshi HM; Tabita FR
    Arch Microbiol; 2000 Mar; 173(3):193-9. PubMed ID: 10763751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon roadmap from syngas to polyhydroxyalkanoates in Rhodospirillum rubrum.
    Revelles O; Tarazona N; García JL; Prieto MA
    Environ Microbiol; 2016 Feb; 18(2):708-20. PubMed ID: 26472698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complementation analysis and regulation of CO2 fixation gene expression in a ribulose 1,5-bisphosphate carboxylase-oxygenase deletion strain of Rhodospirillum rubrum.
    Falcone DL; Tabita FR
    J Bacteriol; 1993 Aug; 175(16):5066-77. PubMed ID: 8349547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of CO2 fixation in bacterial photosynthesis studied by the carbon isotope fractionation technique.
    Sirevåg R; Buchanan BB; Berry JA; Troughton JH
    Arch Microbiol; 1977 Feb; 112(1):35-8. PubMed ID: 402896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen fixation and hydrogen metabolism in photosynthetic bacteria.
    Meyer J; Kelley BC; Vignais PM
    Biochimie; 1978; 60(3):245-60. PubMed ID: 96875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex I and its involvement in redox homeostasis and carbon and nitrogen metabolism in Rhodobacter capsulatus.
    Tichi MA; Meijer WG; Tabita FR
    J Bacteriol; 2001 Dec; 183(24):7285-94. PubMed ID: 11717288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photosynthetic electron transport and anaerobic metabolism in purple non-sulfur phototrophic bacteria.
    McEwan AG
    Antonie Van Leeuwenhoek; 1994; 66(1-3):151-64. PubMed ID: 7747929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photosynthetic assimilation of CO
    Mallén-Ponce MJ; Pérez-Pérez ME; Crespo JL
    Proc Natl Acad Sci U S A; 2022 Jan; 119(2):. PubMed ID: 34996872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uptake of methionine sulfoximine by some N2 fixing bacteria, and its effect on ammonium transport.
    Kleiner D; Alef K; Hartmann A
    FEBS Lett; 1983 Nov; 164(1):121-3. PubMed ID: 6418571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photosynthetic carbon dioxide assimilation by Rhodospirillum rubrum.
    Slater JH; Morris I
    Arch Mikrobiol; 1973; 88(3):213-23. PubMed ID: 4630715
    [No Abstract]   [Full Text] [Related]  

  • 20. Regulation of nitrogenase in the photosynthetic bacterium Rhodobacter sphaeroides containing draTG and nifHDK genes from Rhodobacter capsulatus.
    Yakunin AF; Fedorov AS; Laurinavichene TV; Glaser VM; Egorov NS; Tsygankov AA; Zinchenko VV; Hallenbeck PC
    Can J Microbiol; 2001 Mar; 47(3):206-12. PubMed ID: 11315111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.