BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 8963244)

  • 1. [Plasmin as an earlier unknown inducer of endothelium-dependent vasodilation].
    Sergeev IIu; Bashkov GV; Lazar AV; Machkov VV
    Dokl Akad Nauk; 1996 Aug; 349(5):707-9. PubMed ID: 8963244
    [No Abstract]   [Full Text] [Related]  

  • 2. The role of the endothelium in ceramide-induced vasodilation.
    Johns DG; Jin JS; Webb RC
    Eur J Pharmacol; 1998 May; 349(2-3):R9-10. PubMed ID: 9671089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipopolysaccharide impairs endothelial nitric oxide synthesis in rat renal arteries.
    Piepot HA; Boer C; Groeneveld AB; Van Lambalgen AA; Sipkema P
    Kidney Int; 2000 Jun; 57(6):2502-10. PubMed ID: 10844619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vascular responses after long-term inhibition of nitric oxide synthesis in newborn dogs.
    Török J; Gerová M
    Physiol Res; 1996; 45(4):323-8. PubMed ID: 9085357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endothelium-dependent induction of vasorelaxation by the butanol extract of Phellinus igniarius in isolated rat aorta.
    Kang DG; Cao LH; Lee JK; Choi DH; Kim SJ; Lee H; Kim JS; Lee HS
    Am J Chin Med; 2006; 34(4):655-65. PubMed ID: 16883636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative contribution of eNOS and nNOS to endothelium-dependent vasodilation in the mouse aorta.
    Capettini LS; Cortes SF; Lemos VS
    Eur J Pharmacol; 2010 Sep; 643(2-3):260-6. PubMed ID: 20624383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Selective inhibition of inducible NO-synthase by nonselective inhibitor].
    Pokidyshev DA; Bondarenko NA; Malyshev IIu; Mikoian VD; Kubrina LN; Vanin AF; Manukhina EB
    Ross Fiziol Zh Im I M Sechenova; 1998 Dec; 84(12):1420-7. PubMed ID: 10204189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endothelium-dependent vasodilation of cerebral arteries is altered with simulated microgravity through nitric oxide synthase and EDHF mechanisms.
    Prisby RD; Wilkerson MK; Sokoya EM; Bryan RM; Wilson E; Delp MD
    J Appl Physiol (1985); 2006 Jul; 101(1):348-53. PubMed ID: 16627679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deoxycholyltaurine-induced vasodilation of rodent aorta is nitric oxide- and muscarinic M(3) receptor-dependent.
    Khurana S; Yamada M; Wess J; Kennedy RH; Raufman JP
    Eur J Pharmacol; 2005 Jul; 517(1-2):103-10. PubMed ID: 15964566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endothelium-dependent vasorelaxation induced by L-carnitine in isolated aorta from normotensive and hypertensive rats.
    Herrera MD; Bueno R; De Sotomayor MA; Pérez-Guerrero C; Vázquez CM; Marhuenda E
    J Pharm Pharmacol; 2002 Oct; 54(10):1423-7. PubMed ID: 12396307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide involvement in the hemodynamic response to fluid resuscitation in endotoxic shock in rats.
    Losser MR; Forget AP; Payen D
    Crit Care Med; 2006 Sep; 34(9):2426-31. PubMed ID: 16791113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contributory role of endothelium and voltage-gated potassium channels in apocynin-induced vasorelaxations.
    Han WQ; Wong WT; Tian XY; Huang Y; Wu LY; Zhu DL; Gao PJ
    J Hypertens; 2010 Oct; 28(10):2102-10. PubMed ID: 20706137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De Motu Arteriarum: hemodynamics and arterial function in humans.
    Green DJ; Thijssen DH
    Hypertension; 2011 Jun; 57(6):1049-50. PubMed ID: 21502565
    [No Abstract]   [Full Text] [Related]  

  • 14. Lipopolysaccharide-induced impairment of nitric oxide-mediated vasorelaxation and protective effects of nitric oxide synthesis inhibitors in isolated rat mesenteric arteries.
    Miike T; Kanda M; Kunishiro K; Shirahase H
    Arzneimittelforschung; 2010; 60(6):315-9. PubMed ID: 20648920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endothelium-dependent vascular hyporesponsiveness without detection of nitric oxide synthase induction in aortas of cirrhotic rats.
    Weigert AL; Martin PY; Niederberger M; Higa EM; McMurtry IF; Gines P; Schrier RW
    Hepatology; 1995 Dec; 22(6):1856-62. PubMed ID: 7489998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endothelial beta3-adrenoceptors mediate vasorelaxation of human coronary microarteries through nitric oxide and endothelium-dependent hyperpolarization.
    Dessy C; Moniotte S; Ghisdal P; Havaux X; Noirhomme P; Balligand JL
    Circulation; 2004 Aug; 110(8):948-54. PubMed ID: 15302798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selected Contribution: Aging impairs nitric oxide and prostacyclin mediation of endothelium-dependent dilation in soleus feed arteries.
    Woodman CR; Price EM; Laughlin MH
    J Appl Physiol (1985); 2003 Nov; 95(5):2164-70. PubMed ID: 12897037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endogenous nitric oxide attenuates beta-adrenoceptor-mediated relaxation in rat aorta.
    Kang KB; van der Zypp A; Majewski H
    Clin Exp Pharmacol Physiol; 2007; 34(1-2):95-101. PubMed ID: 17201742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regional differences in endothelium-dependent relaxation in the rat: contribution of nitric oxide and nitric oxide-independent mechanisms.
    Zygmunt PM; Ryman T; Högestätt ED
    Acta Physiol Scand; 1995 Nov; 155(3):257-66. PubMed ID: 8619323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endothelium-independent relaxation of aortic rings by the nitric oxide synthase inhibitor diphenyleneiodonium.
    Dodd-o JM; Zheng G; Silverman HS; Lakatta EG; Ziegelstein RC
    Br J Pharmacol; 1997 Mar; 120(5):857-64. PubMed ID: 9138692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.