These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 8963863)

  • 1. Mass spectrometry analysis of the by-products of intrastromal photorefractive keratectomy.
    Habib MS; Speaker MG; Schnatter WF
    Ophthalmic Surg Lasers; 1995; 26(5):481-3. PubMed ID: 8963863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound biomicroscopy of intrastromal photorefractive keratectomy with the Nd:YLF picosecond laser.
    Habib MS; Speaker MG; Tello C; Liebmann J; Ritch R
    J Refract Surg; 1995; 11(6):448-52. PubMed ID: 8624828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wound healing following intrastromal photorefractive keratectomy with the Nd:YLF picosecond laser in the cat.
    Habib MS; Speaker MG; McCormick SA; Kaiser R
    J Refract Surg; 1995; 11(6):442-7. PubMed ID: 8624827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myopic intrastromal photorefractive keratectomy with the neodymium-yttrium lithium fluoride picosecond laser in the cat cornea.
    Habib MS; Speaker MG; Kaiser R; Juhasz T
    Arch Ophthalmol; 1995 Apr; 113(4):499-505. PubMed ID: 7710402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water.
    Juhasz T; Kastis GA; Suárez C; Bor Z; Bron WE
    Lasers Surg Med; 1996; 19(1):23-31. PubMed ID: 8836993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human corneal ablation threshold using the 193-nm ArF excimer laser.
    Berns MW; Chao L; Giebel AW; Liaw LH; Andrews J; VerSteeg B
    Invest Ophthalmol Vis Sci; 1999 Apr; 40(5):826-30. PubMed ID: 10102278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphological response to UV-B irradiation after excimer-laser photorefractive keratectomy.
    Nagy ZZ; Hiscott P; Seitz B; Schlötzer-Schrehardt U; Süveges I; Naumann GO
    Ger J Ophthalmol; 1996 Nov; 5(6):352-61. PubMed ID: 9479518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photorefractive keratectomy using solid state laser 213 nm and excimer laser 193 nm: a randomized, contralateral, comparative, experimental study.
    Tsiklis NS; Kymionis GD; Kounis GA; Naoumidi II; Pallikaris IG
    Invest Ophthalmol Vis Sci; 2008 Apr; 49(4):1415-20. PubMed ID: 18385058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanism of ablation of corneal tissue by the neodymium doped yttrium-lithium-fluoride picosecond laser.
    Brown DB; O'Brien WJ; Schultz RO
    Cornea; 1994 Nov; 13(6):479-86. PubMed ID: 7842704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic force microscopic study of the human cornea following excimer laser keratectomy.
    Nógrádi A; Hopp B; Révész K; Szabó G; Bor Z; Kolozsvari L
    Exp Eye Res; 2000 Mar; 70(3):363-8. PubMed ID: 10712822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunoconfocal localization of gelatinase B expressed by migrating intrastromal epithelial cells after deep annular excimer keratectomy.
    Maeda M; Vanlandingham BD; Ye H; Lu PC; Azar DT
    Curr Eye Res; 1998 Aug; 17(8):836-43. PubMed ID: 9724000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors determining the refractive effects of intrastromal photorefractive keratectomy with the picosecond laser.
    Vogel A; Günther T; Asiyo-Vogel M; Birngruber R
    J Cataract Refract Surg; 1997 Nov; 23(9):1301-10. PubMed ID: 9423900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Review of intrastromal photorefractive keratectomy with the neodymium-yttrium lithium fluoride laser.
    Gimbel HV; Coupland SG; Ferensowicz M
    Int Ophthalmol Clin; 1997; 37(1):95-102. PubMed ID: 9101348
    [No Abstract]   [Full Text] [Related]  

  • 14. Corneal femtosecond laser keratotomy results in isolated stromal injury and favorable wound-healing response.
    Meltendorf C; Burbach GJ; Bühren J; Bug R; Ohrloff C; Deller T
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):2068-75. PubMed ID: 17460262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrastromal keratotomy with femtosecond laser avoids profibrotic TGF-beta1 induction.
    Meltendorf C; Burbach GJ; Ohrloff C; Ghebremedhin E; Deller T
    Invest Ophthalmol Vis Sci; 2009 Aug; 50(8):3688-95. PubMed ID: 19387066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrastructure of picosecond laser intrastromal photodisruption.
    Krueger RR; Quantock AJ; Juhasz T; Ito M; Assil KK; Schanzlin DJ
    J Refract Surg; 1996; 12(5):607-12. PubMed ID: 8871862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neutralizing antibody to TGFbeta modulates stromal fibrosis but not regression of photoablative effect following PRK.
    Møller-Pedersen T; Cavanagh HD; Petroll WM; Jester JV
    Curr Eye Res; 1998 Jul; 17(7):736-47. PubMed ID: 9678420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Picosecond laser in situ keratomileusis with a 1053-nm Nd:YLF laser.
    Ito M; Quantock AJ; Malhan S; Schanzlin DJ; Krueger RR
    J Refract Surg; 1996; 12(6):721-8. PubMed ID: 8895129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Randomized bilateral comparison of excimer laser in situ keratomileusis and photorefractive keratectomy for 2.50 to 8.00 diopters of myopia.
    El-Maghraby A; Salah T; Waring GO; Klyce S; Ibrahim O
    Ophthalmology; 1999 Mar; 106(3):447-57. PubMed ID: 10080199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term histopathologic findings in human corneal wounds after refractive surgical procedures.
    Dawson DG; Edelhauser HF; Grossniklaus HE
    Am J Ophthalmol; 2005 Jan; 139(1):168-78. PubMed ID: 15652843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.