These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 8964251)

  • 1. The ecotoxicity of chlorate to aquatic organisms: a critical review.
    van Wijk DJ; Hutchinson TH
    Ecotoxicol Environ Saf; 1995 Dec; 32(3):244-53. PubMed ID: 8964251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity of chlorate and chlorite to selected species of algae, bacteria, and fungi.
    van Wijk DJ; Kroon SG; Garttener-Arends IC
    Ecotoxicol Environ Saf; 1998 Jul; 40(3):206-11. PubMed ID: 9679683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute hazard of biocides for the aquatic environmental compartment from a life-cycle perspective.
    Hernández-Moreno D; Blázquez M; Andreu-Sánchez O; Bermejo-Nogales A; Fernández-Cruz ML
    Sci Total Environ; 2019 Mar; 658():416-423. PubMed ID: 30579199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental properties and aquatic hazard assessment of anionic surfactants: physico-chemical, environmental fate and ecotoxicity properties.
    Könnecker G; Regelmann J; Belanger S; Gamon K; Sedlak R
    Ecotoxicol Environ Saf; 2011 Sep; 74(6):1445-60. PubMed ID: 21550112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of the effects of bromate on aquatic organisms and toxicity of bromate to oyster (Crassostrea gigas) embryos.
    Hutchinson TH; Hutchings MJ; Moore KW
    Ecotoxicol Environ Saf; 1997 Dec; 38(3):238-43. PubMed ID: 9469875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of pulp mill chlorate on Baltic Sea algae.
    Rosemarin A; Lehtinen KJ; Notini M; Mattson J
    Environ Pollut; 1994; 85(1):3-13. PubMed ID: 15091680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative toxicity of acrylic acid to marine and freshwater microalgae and the significance for environmental effects assessments.
    Sverdrup LE; Källqvist T; Kelley AE; Fürst CS; Hagen SB
    Chemosphere; 2001 Nov; 45(4-5):653-8. PubMed ID: 11680761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive characterization of the acute and chronic toxicity of the neonicotinoid insecticide thiamethoxam to a suite of aquatic primary producers, invertebrates, and fish.
    Finnegan MC; Baxter LR; Maul JD; Hanson ML; Hoekstra PF
    Environ Toxicol Chem; 2017 Oct; 36(10):2838-2848. PubMed ID: 28493485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acute toxicity of fire control chemicals to Daphnia magna (Straus) and Selenastrum capricornutum (Printz).
    McDonald SF; Hamilton SJ; Buhl KJ; Heisinger JF
    Ecotoxicol Environ Saf; 1996 Feb; 33(1):62-72. PubMed ID: 8744925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment.
    Camargo JA; Alonso A
    Environ Int; 2006 Aug; 32(6):831-49. PubMed ID: 16781774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive review of several surfactants in marine environments: Fate and ecotoxicity.
    Jackson M; Eadsforth C; Schowanek D; Delfosse T; Riddle A; Budgen N
    Environ Toxicol Chem; 2016 May; 35(5):1077-86. PubMed ID: 26526979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aquatic risk assessment of a novel strobilurin fungicide: A microcosm study compared with the species sensitivity distribution approach.
    Chen L; Song Y; Tang B; Song X; Yang H; Li B; Zhao Y; Huang C; Han X; Wang S; Li Z
    Ecotoxicol Environ Saf; 2015 Oct; 120():418-27. PubMed ID: 26122735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicity assessment of five emerging pollutants, alone and in binary or ternary mixtures, towards three aquatic organisms.
    Di Poi C; Costil K; Bouchart V; Halm-Lemeille MP
    Environ Sci Pollut Res Int; 2018 Mar; 25(7):6122-6134. PubMed ID: 28620858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review of the environmental fate and effects of two UV filter substances used in cosmetic products.
    Duis K; Junker T; Coors A
    Sci Total Environ; 2022 Feb; 808():151931. PubMed ID: 34863752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strategies employed to determine the acute aquatic toxicity of ethyl benzene, a highly volatile, poorly water-soluble chemical.
    Masten LW; Boeri RL; Walker JD
    Ecotoxicol Environ Saf; 1994 Apr; 27(3):335-48. PubMed ID: 7519552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review of the Ecotoxicological Properties of the Methylenedianiline Substances.
    Schupp T; Allmendinger H; Bossuyt BTA; Hidding B; Tury B; West RJ
    Rev Environ Contam Toxicol; 2017; 241():39-72. PubMed ID: 27300013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The toxicity of molybdate to freshwater and marine organisms. III. Generating additional chronic toxicity data for the refinement of safe environmental exposure concentrations in the US and Europe.
    Heijerick DG; Carey S
    Sci Total Environ; 2017 Dec; 609():420-428. PubMed ID: 28755592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of nickel toxicity to fish and invertebrates in marine and estuarine waters.
    Blewett TA; Leonard EM
    Environ Pollut; 2017 Apr; 223():311-322. PubMed ID: 28122673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Occurrence, fate and effects of azoxystrobin in aquatic ecosystems: a review.
    Rodrigues ET; Lopes I; Pardal MÂ
    Environ Int; 2013 Mar; 53():18-28. PubMed ID: 23314040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Do subtoxic levels of chlorate influence the desiccation tolerance of Egeria densa?
    Palma AT; Schwarz A; Henríquez LA; Alvarez X; Fariña JM; Lu Q
    Environ Toxicol Chem; 2013 Feb; 32(2):417-22. PubMed ID: 23161751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.