These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 8964258)

  • 1. Color discrimination along the cardinal chromatic axes with VECPs as an index of function of the parvocellular pathway. Correspondence of intersubject and axis variations to psychophysics.
    Macaluso C; Lamedica A; Baratta G; Cordella M
    Electroencephalogr Clin Neurophysiol; 1996 Jan; 100(1):12-7. PubMed ID: 8964258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual evoked cortical potentials and psychophysical determination of color contrast thresholds along different chromatic axes.
    Macaluso C; Baratta G; Lamedica A; Luani D; Cordella M
    Doc Ophthalmol; 1995; 90(2):201-9. PubMed ID: 7497891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual evoked cortical potential elicited by pseudoisochromatic stimulus.
    Salomão RC; Martins ICVDS; Risuenho BBO; Guimarães DL; Silveira LCL; Ventura DF; Souza GS
    Doc Ophthalmol; 2019 Feb; 138(1):43-54. PubMed ID: 30617670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amplitude of the transient visual evoked potential (tVEP) as a function of achromatic and chromatic contrast: contribution of different visual pathways.
    Souza GS; Gomes BD; Lacerda EM; Saito CA; da Silva Filho M; Silveira LC
    Vis Neurosci; 2008; 25(3):317-25. PubMed ID: 18321403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between color and luminance in the perception of orientation.
    Clifford CW; Spehar B; Solomon SG; Martin PR; Zaidi Q
    J Vis; 2003; 3(2):106-15. PubMed ID: 12678615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Psychophysical chromatic mechanisms in macaque monkey.
    Stoughton CM; Lafer-Sousa R; Gagin G; Conway BR
    J Neurosci; 2012 Oct; 32(43):15216-26. PubMed ID: 23100442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective stimulation of colour mechanisms: an empirical perspective.
    Kulikowski JJ; McKeefry DJ; Robson AG
    Spat Vis; 1997; 10(4):379-402. PubMed ID: 9176947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Normal and dichromatic color discrimination measured with transient visual evoked potential.
    Gomes BD; Souza GS; Rodrigues AR; Saito CA; Silveira LC; da Silva Filho M
    Vis Neurosci; 2006; 23(3-4):617-27. PubMed ID: 16962005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responses of the human visual cortex and LGN to achromatic and chromatic temporal modulations: an fMRI study.
    Mullen KT; Thompson B; Hess RF
    J Vis; 2010 Nov; 10(13):13. PubMed ID: 21106678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Objective assessment of chromatic and achromatic pattern adaptation reveals the temporal response properties of different visual pathways.
    Robson AG; Kulikowski JJ
    Vis Neurosci; 2012 Nov; 29(6):301-13. PubMed ID: 23206417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatic and achromatic vision of macaques: role of the P pathway.
    Merigan WH
    J Neurosci; 1989 Mar; 9(3):776-83. PubMed ID: 2926482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinotopic distribution of chromatic responses in human primary visual cortex.
    Vanni S; Henriksson L; Viikari M; James AC
    Eur J Neurosci; 2006 Sep; 24(6):1821-31. PubMed ID: 17004945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual evoked potentials in three-dimensional color space: correlates of spatio-chromatic processing.
    Rabin J; Switkes E; Crognale M; Schneck ME; Adams AJ
    Vision Res; 1994 Oct; 34(20):2657-71. PubMed ID: 7975303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Some transformations of color information from lateral geniculate nucleus to striate cortex.
    De Valois RL; Cottaris NP; Elfar SD; Mahon LE; Wilson JA
    Proc Natl Acad Sci U S A; 2000 Apr; 97(9):4997-5002. PubMed ID: 10781111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motion minima for different directions in color space.
    Webster MA; Mollon JD
    Vision Res; 1997 Jun; 37(11):1479-98. PubMed ID: 9205710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The perceived speed of drifting chromatic gratings is mechanism-dependent.
    Nguyen-Tri D; Faubert J
    Vision Res; 2002 Aug; 42(17):2073-9. PubMed ID: 12169426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in the human visually evoked cortical potential in response to chromatic modulation of a sinusoidal grating.
    Petry HM; Donovan WJ; Moore RK; Dixon WB; Riggs LA
    Vision Res; 1982; 22(7):745-55. PubMed ID: 7123859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial frequency selectivity of the human visual cortex estimated with pseudo-random visual evoked cortical potential (VECP).
    Martins ICVS; Brasil A; Miquilini L; Goulart PRK; Herculano AM; Silveira LCL; Souza GS
    Vision Res; 2019 Dec; 165():13-21. PubMed ID: 31610286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Color discrimination ellipses of trichromats measured with transient and steady state visual evoked potentials.
    Gomes BD; Souza GS; Lima MG; Rodrigues AR; Saito CA; da Silva Filho M; Silveira LC
    Vis Neurosci; 2008; 25(3):333-9. PubMed ID: 18598404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatic temporal integration and retinal eccentricity: psychophysics, neurometric analysis and cortical pooling.
    Swanson WH; Pan F; Lee BB
    Vision Res; 2008 Nov; 48(26):2657-62. PubMed ID: 18417185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.