These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 8964645)

  • 1. Characterization of the resistance of pyrolytic carbon to abrasive wear.
    Vitale E; Giusti P
    Int J Artif Organs; 1995 Dec; 18(12):777-85. PubMed ID: 8964645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wear assessment in bileaflet heart valves.
    Arru P; Rinaldi S; Stacchino C; Vallana F
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S133-43; discussion 144-8. PubMed ID: 8803766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early wear development in a novel mechanical heart valve prosthesis made from polymeric materials.
    Medart D; Steinseifer U; Reul H; Schmitz-Rode T
    J Heart Valve Dis; 2006 Jul; 15(4):557-62. PubMed ID: 16901054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatigue and fracture of pyrolytic carbon: a damage- tolerant approach to structural integrity and life prediction in "ceramic" heart valve prostheses.
    Ritchie RO
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S9-31. PubMed ID: 8794026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical cardiac valve prostheses: wear characteristics and magnitudes in three bileaflet valves.
    Elizondo DR; Boland ED; Ambrus JR; Kurk JL
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S115-23; discussion 144-8. PubMed ID: 8803764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early wear development in a novel mechanical heart valve prosthesis made from polymeric materials.
    Medart D; Steinseifer U; Reul H; Schmitz-Rode T
    J Heart Valve Dis; 2006 Sep; 15(5):710-5. PubMed ID: 17044379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a ceramic conduit valve prosthesis for corrective cardiovascular surgery.
    Gentle CR; Tansley GD
    Biomaterials; 1995 Feb; 16(3):245-9. PubMed ID: 7749002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abrasive wear of ceramic, metal, and UHMWPE bearing surfaces from third-body bone, PMMA bone cement, and titanium debris.
    Davidson JA; Poggie RA; Mishra AK
    Biomed Mater Eng; 1994; 4(3):213-29. PubMed ID: 7950870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Are PEEK-on-Ceramic Bearings an Option for Total Disc Arthroplasty? An In Vitro Tribology Study.
    Siskey R; Ciccarelli L; Lui MK; Kurtz SM
    Clin Orthop Relat Res; 2016 Nov; 474(11):2428-2440. PubMed ID: 27677290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Durability of pyrolytic carbon-containing heart valve prostheses.
    Schoen FJ; Titus JL; Lawrie GM
    J Biomed Mater Res; 1982 Sep; 16(5):559-70. PubMed ID: 7130212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface engineering of artificial heart valve disks using nanostructured thin films deposited by chemical vapour deposition and sol-gel methods.
    Jackson MJ; Robinson GM; Ali N; Kousar Y; Mei S; Gracio J; Taylor H; Ahmed W
    J Med Eng Technol; 2006; 30(5):323-9. PubMed ID: 16980288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical performance of pyrolytic carbon in prosthetic heart valve applications.
    Cao H
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S32-49. PubMed ID: 8794031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Material properties, biocompatibility, and wear resistance of the Medtronic pyrolytic carbon.
    Leuer LH; Gross JM; Johnson KM
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S105-9; discussion 110. PubMed ID: 8803762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of interface characterization and adhesion of glass ceramics to commercially pure titanium and gold alloy after thermal- and mechanical-loading.
    Vásquez VZ; Ozcan M; Kimpara ET
    Dent Mater; 2009 Feb; 25(2):221-31. PubMed ID: 18718654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tribological behaviour of orthodontic archwires under dry and wet sliding conditions in-vitro. II--Wear patterns.
    Berradja A; Willems G; Celis JP
    Aust Orthod J; 2006 May; 22(1):21-9. PubMed ID: 16792242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water and abrasive effects on three-body wear of composites.
    Sarrett DC; Söderholm KJ; Batich CD
    J Dent Res; 1991 Jul; 70(7):1074-81. PubMed ID: 1829738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatigue of isotropic pyrolytic carbon used in mechanical heart valves.
    Ma L; Sines G
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S59-64. PubMed ID: 8794033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Friction and wear properties of polymer, metal, and ceramic prosthetic joint materials evaluated on a multichannel screening device.
    McKellop H; Clarke I; Markolf K; Amstutz H
    J Biomed Mater Res; 1981 Sep; 15(5):619-53. PubMed ID: 12659132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural failure of pyrolytic carbon heart valves.
    Richard G; Cao H
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S79-85. PubMed ID: 8803759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An initial investigation into the wear and damage within the pivots of three types of bileaflet mechanical heart valves.
    King MJ; Olin CL; Fisher J
    J Heart Valve Dis; 1996 Jun; 5 Suppl 1():S111-4; discussion 144-8. PubMed ID: 8803763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.