BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 8964721)

  • 1. Role of arterial design on pulse wave reflection in a fractal pulmonary network.
    Bennett SH; Goetzman BW; Milstein JM; Pannu JS
    J Appl Physiol (1985); 1996 Mar; 80(3):1033-56. PubMed ID: 8964721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Input impedance and reflection coefficient in fractal-like models of asymmetrically branching compliant tubes.
    Brown DJ
    IEEE Trans Biomed Eng; 1996 Jul; 43(7):715-22. PubMed ID: 9216143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling methodology for vascular input impedance determination and interpretation.
    Bennett SH
    J Appl Physiol (1985); 1994 Jan; 76(1):455-84. PubMed ID: 8175545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive (input) impedance, pulse wave velocity, and wave reflection in healthy middle-aged men and women.
    Segers P; Rietzschel ER; De Buyzere ML; Vermeersch SJ; De Bacquer D; Van Bortel LM; De Backer G; Gillebert TC; Verdonck PR;
    Hypertension; 2007 Jun; 49(6):1248-55. PubMed ID: 17404183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Input impedance of distributed arterial structures as used in investigations of underlying concepts in arterial haemodynamics.
    Avolio A
    Med Biol Eng Comput; 2009 Feb; 47(2):143-51. PubMed ID: 18949501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arterial pulse wave reflection as feedback.
    Quick CM; Berger DS; Noordergraaf A
    IEEE Trans Biomed Eng; 2002 May; 49(5):440-5. PubMed ID: 12002175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of Model Based (Input) Impedance, Pulse Wave Velocity, and Wave Reflection in the Asklepios Cohort.
    Hametner B; Parragh S; Mayer C; Weber T; Van Bortel L; De Buyzere M; Segers P; Rietzschel E; Wassertheurer S
    PLoS One; 2015; 10(10):e0141656. PubMed ID: 26513463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of pulmonary blood flow by fractal analysis of flow heterogeneity in isolated canine lungs.
    Barman SA; McCloud LL; Catravas JD; Ehrhart IC
    J Appl Physiol (1985); 1996 Nov; 81(5):2039-45. PubMed ID: 8941527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vascular impedance analysis in dog lung with detailed morphometric and elasticity data.
    Gan RZ; Yen RT
    J Appl Physiol (1985); 1994 Aug; 77(2):706-17. PubMed ID: 8002518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Extraction of lung electrical impedance character points based on wavelet transformation].
    Lei L; Li B; Dai J; Wang B; Chen Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Dec; 29(6):1197-200, 1206. PubMed ID: 23469556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-varying pulmonary arterial input impedance via wavelet decomposition.
    Li Z; Grant BJ; Lieber BB
    J Appl Physiol (1985); 1995 Jun; 78(6):2309-19. PubMed ID: 7665434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of pulmonary blood flow on the fractal nature of flow heterogeneity in sheep lungs.
    Caruthers SD; Harris TR
    J Appl Physiol (1985); 1994 Sep; 77(3):1474-9. PubMed ID: 7836155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model combining hydrodynamics and fractal theory for analysis of in vivo peripheral pulmonary and systemic resistance of shunt cardiac defects.
    Nakamura Y; Awa S; Kato H; Ito YM; Kamiya A; Igarashi T
    J Theor Biol; 2011 Oct; 287():64-73. PubMed ID: 21820445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulse reflection sites and effective length of the arterial system.
    Campbell KB; Lee LC; Frasch HF; Noordergraaf A
    Am J Physiol; 1989 Jun; 256(6 Pt 2):H1684-9. PubMed ID: 2735437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of input impedance to determine changes in the resistance of arterial vessels at different levels in feline femoral bed.
    Naumov AY; Balashov SA; Melkumyants AM
    Ann Biomed Eng; 2014 Aug; 42(8):1644-57. PubMed ID: 24781532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of chronically elevated pulmonary arterial pressure and flow on right ventricular afterload.
    Ha B; Lucas CL; Henry GW; Frantz EG; Ferreiro JI; Wilcox BR
    Am J Physiol; 1994 Jul; 267(1 Pt 2):H155-65. PubMed ID: 8048580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systemic arterial hemodynamics in the diamond python Morelia spilotes.
    Avolio AP; O'Rourke MF; Bulliman BT; Webster ME; Mang K
    Am J Physiol; 1982 Sep; 243(3):R205-12. PubMed ID: 7114281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of age on pulmonary perfusion heterogeneity measured by magnetic resonance imaging.
    Levin DL; Buxton RB; Spiess JP; Arai T; Balouch J; Hopkins SR
    J Appl Physiol (1985); 2007 May; 102(5):2064-70. PubMed ID: 17303711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of vessel distension and myogenic tone on pulmonary arterial input impedance. A study using a computer model of rabbit lung.
    Piene H
    Acta Physiol Scand; 1976 Sep; 98(1):54-66. PubMed ID: 970157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An effective fractal-tree closure model for simulating blood flow in large arterial networks.
    Perdikaris P; Grinberg L; Karniadakis GE
    Ann Biomed Eng; 2015 Jun; 43(6):1432-42. PubMed ID: 25510364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.