These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 8964730)

  • 41. Muscle function and running activity in mouse models of hereditary muscle dystrophy: impact of double knockout for dystrophin and the transcription factor MyoD.
    Mangner N; Adams V; Sandri M; Hoellriegel R; Hambrecht R; Schuler G; Gielen S
    Muscle Nerve; 2012 Apr; 45(4):544-51. PubMed ID: 22431088
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Voluntary exercise induces structural remodeling in the hearts of dystrophin-deficient mice.
    Costas JM; Nye DJ; Henley JB; Plochocki JH
    Muscle Nerve; 2010 Dec; 42(6):881-5. PubMed ID: 21104863
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Year-long clenbuterol treatment of mice increases mass, but not specific force or normalized power, of skeletal muscles.
    Lynch GS; Hinkle RT; Faulkner JA
    Clin Exp Pharmacol Physiol; 1999 Feb; 26(2):117-20. PubMed ID: 10065331
    [TBL] [Abstract][Full Text] [Related]  

  • 44. First evaluation of the potential effectiveness in muscular dystrophy of a novel chimeric compound, BN 82270, acting as calpain-inhibitor and anti-oxidant.
    Burdi R; Didonna MP; Pignol B; Nico B; Mangieri D; Rolland JF; Camerino C; Zallone A; Ferro P; Andreetta F; Confalonieri P; De Luca A
    Neuromuscul Disord; 2006 Apr; 16(4):237-48. PubMed ID: 16542837
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Naproxcinod shows significant advantages over naproxen in the mdx model of Duchenne Muscular Dystrophy.
    Miglietta D; De Palma C; Sciorati C; Vergani B; Pisa V; Villa A; Ongini E; Clementi E
    Orphanet J Rare Dis; 2015 Aug; 10():101. PubMed ID: 26296873
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Changes in calsequestrin, TNF-α, TGF-β and MyoD levels during the progression of skeletal muscle dystrophy in mdx mice: a comparative analysis of the quadriceps, diaphragm and intrinsic laryngeal muscles.
    Barros Maranhão J; de Oliveira Moreira D; Maurício AF; de Carvalho SC; Ferretti R; Pereira JA; Santo Neto H; Marques MJ
    Int J Exp Pathol; 2015 Oct; 96(5):285-93. PubMed ID: 26515458
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Efficiency and functional consequences of adenovirus-mediated in vivo gene transfer to normal and dystrophic (mdx) mouse diaphragm.
    Petrof BJ; Acsadi G; Jani A; Massie B; Bourdon J; Matusiewicz N; Yang L; Lochmüller H; Karpati G
    Am J Respir Cell Mol Biol; 1995 Nov; 13(5):508-17. PubMed ID: 7576685
    [TBL] [Abstract][Full Text] [Related]  

  • 48. GLPG0492, a novel selective androgen receptor modulator, improves muscle performance in the exercised-mdx mouse model of muscular dystrophy.
    Cozzoli A; Capogrosso RF; Sblendorio VT; Dinardo MM; Jagerschmidt C; Namour F; Camerino GM; De Luca A
    Pharmacol Res; 2013 Jun; 72():9-24. PubMed ID: 23523664
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Decreased monocarboxylate transporter 1 in rat soleus and EDL muscles exposed to clenbuterol.
    Kitaura T; Tsunekawa N; Hatta H
    J Appl Physiol (1985); 2001 Jul; 91(1):85-90. PubMed ID: 11408417
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effects of hyperthyroidism on muscular dystrophy in the mdx mouse: greater dystrophy in cardiac and soleus muscle.
    Anderson JE; Liu L; Kardami E
    Muscle Nerve; 1994 Jan; 17(1):64-73. PubMed ID: 8264704
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effects of endurance exercise on dystrophic mdx mice. II. Contractile properties of skinned muscle fibres.
    Lynch GS; Hayes A; Lam MH; Williams DA
    Proc Biol Sci; 1993 Jul; 253(1336):27-33. PubMed ID: 8396775
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fibrosis and inflammation are greater in muscles of beta-sarcoglycan-null mouse than mdx mouse.
    Gibertini S; Zanotti S; Savadori P; Curcio M; Saredi S; Salerno F; Andreetta F; Bernasconi P; Mantegazza R; Mora M
    Cell Tissue Res; 2014 May; 356(2):427-43. PubMed ID: 24723230
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The role of ascorbic acid and exercise in chronic ischemia of skeletal muscle in rats.
    Loizidis T; Sioga A; Economou L; Frosinis A; Kyparos A; Zotou A; Albani M
    J Appl Physiol (1985); 2007 Jan; 102(1):321-30. PubMed ID: 16946031
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Exercise training and clenbuterol reduce insulin resistance of obese Zucker rats.
    Torgan CE; Brozinick JT; Banks EA; Cortez MY; Wilcox RE; Ivy JL
    Am J Physiol; 1993 Mar; 264(3 Pt 1):E373-9. PubMed ID: 8384791
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chronic clenbuterol treatment compromises force production without directly altering skeletal muscle contractile machinery.
    Py G; Ramonatxo C; Sirvent P; Sanchez AM; Philippe AG; Douillard A; Galbès O; Lionne C; Bonnieu A; Chopard A; Cazorla O; Lacampagne A; Candau RB
    J Physiol; 2015 Apr; 593(8):2071-84. PubMed ID: 25656230
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Administration of insulin-like growth factor-I improves fatigue resistance of skeletal muscles from dystrophic mdx mice.
    Gregorevic P; Plant DR; Lynch GS
    Muscle Nerve; 2004 Sep; 30(3):295-304. PubMed ID: 15318340
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effect of respiratory muscle training with CO2 breathing on cellular adaptation of mdx mouse diaphragm.
    Matecki S; Rivier F; Hugon G; Koechlin C; Michel A; Prefaut C; Mornet D; Ramonatxo M
    Neuromuscul Disord; 2005 Jun; 15(6):427-36. PubMed ID: 15907290
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mild Aerobic Exercise Training Hardly Affects the Diaphragm of mdx Mice.
    Morici G; Frinchi M; Pitruzzella A; Di Liberto V; Barone R; Pace A; Di Felice V; Belluardo N; Cappello F; Mudò G; Bonsignore MR
    J Cell Physiol; 2017 Aug; 232(8):2044-2052. PubMed ID: 27576008
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of clenbuterol on bone metabolism in exercised or sedentary rats.
    Cavalié H; Lac G; Lebecque P; Chanteranne B; Davicco MJ; Barlet JP
    J Appl Physiol (1985); 2002 Dec; 93(6):2034-7. PubMed ID: 12433936
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fiber type-specific effects of clenbuterol and exercise training on insulin-resistant muscle.
    Torgan CE; Etgen GJ; Kang HY; Ivy JL
    J Appl Physiol (1985); 1995 Jul; 79(1):163-7. PubMed ID: 7559215
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.