These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 8964735)

  • 1. Adaptive responses to muscle lengthening and shortening in humans.
    Hortobágyi T; Hill JP; Houmard JA; Fraser DD; Lambert NJ; Israel RG
    J Appl Physiol (1985); 1996 Mar; 80(3):765-72. PubMed ID: 8964735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Greater initial adaptations to submaximal muscle lengthening than maximal shortening.
    Hortobágyi T; Barrier J; Beard D; Braspennincx J; Koens P; Devita P; Dempsey L; Lambert J
    J Appl Physiol (1985); 1996 Oct; 81(4):1677-82. PubMed ID: 8904586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Greater cross education following training with muscle lengthening than shortening.
    Hortobágyi T; Lambert NJ; Hill JP
    Med Sci Sports Exerc; 1997 Jan; 29(1):107-12. PubMed ID: 9000162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of eccentric versus concentric training on thigh muscle strength and EMG.
    Seger JY; Thorstensson A
    Int J Sports Med; 2005; 26(1):45-52. PubMed ID: 15643534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscular performance after concentric and eccentric exercise in trained men.
    Vikne H; Refsnes PE; Ekmark M; Medbø JI; Gundersen V; Gundersen K
    Med Sci Sports Exerc; 2006 Oct; 38(10):1770-81. PubMed ID: 17019299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EMG power spectrum and features of the superimposed M-wave during voluntary eccentric and concentric actions at different activation levels.
    Linnamo V; Strojnik V; Komi PV
    Eur J Appl Physiol; 2002 Apr; 86(6):534-40. PubMed ID: 11944102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuromuscular Adaptations to Work-matched Maximal Eccentric versus Concentric Training.
    Maeo S; Shan X; Otsuka S; Kanehisa H; Kawakami Y
    Med Sci Sports Exerc; 2018 Aug; 50(8):1629-1640. PubMed ID: 29570534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of short-term concentric vs. eccentric resistance training on single muscle fiber MHC distribution in humans.
    Raue U; Terpstra B; Williamson DL; Gallagher PM; Trappe SW
    Int J Sports Med; 2005 Jun; 26(5):339-43. PubMed ID: 15895315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plyometric training improves voluntary activation and strength during isometric, concentric and eccentric contractions.
    Behrens M; Mau-Moeller A; Mueller K; Heise S; Gube M; Beuster N; Herlyn PK; Fischer DC; Bruhn S
    J Sci Med Sport; 2016 Feb; 19(2):170-6. PubMed ID: 25766509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drop punt kicking induces eccentric knee flexor weakness associated with reductions in hamstring electromyographic activity.
    Duhig SJ; Williams MD; Minett GM; Opar D; Shield AJ
    J Sci Med Sport; 2017 Jun; 20(6):595-599. PubMed ID: 28314618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural adaptations to submaximal isokinetic eccentric strength training.
    Barrué-Belou S; Amarantini D; Marque P; Duclay J
    Eur J Appl Physiol; 2016 May; 116(5):1021-30. PubMed ID: 27030127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time course of neuromuscular adaptations to knee extensor eccentric training.
    Baroni BM; Rodrigues R; Franke RA; Geremia JM; Rassier DE; Vaz MA
    Int J Sports Med; 2013 Oct; 34(10):904-11. PubMed ID: 23526592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electromyographic analysis of exercise resulting in symptoms of muscle damage.
    McHugh MP; Connolly DA; Eston RG; Gleim GW
    J Sports Sci; 2000 Mar; 18(3):163-72. PubMed ID: 10737267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force and EMG power spectrum during and after eccentric and concentric fatigue.
    Linnamo V; Bottas R; Komi PV
    J Electromyogr Kinesiol; 2000 Oct; 10(5):293-300. PubMed ID: 11018439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle-fiber conduction velocity during concentric and eccentric actions on a flywheel exercise device.
    Pozzo M; Alkner B; Norrbrand L; Farina D; Tesch PA
    Muscle Nerve; 2006 Aug; 34(2):169-77. PubMed ID: 16688721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscular adaptation to concentric and eccentric exercise at equal power levels.
    Mayhew TP; Rothstein JM; Finucane SD; Lamb RL
    Med Sci Sports Exerc; 1995 Jun; 27(6):868-73. PubMed ID: 7658948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific effects of eccentric and concentric training on muscle strength and morphology in humans.
    Seger JY; Arvidsson B; Thorstensson A
    Eur J Appl Physiol Occup Physiol; 1998 Dec; 79(1):49-57. PubMed ID: 10052660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuromuscular adaptations to detraining following resistance training in previously untrained subjects.
    Andersen LL; Andersen JL; Magnusson SP; Aagaard P
    Eur J Appl Physiol; 2005 Mar; 93(5-6):511-8. PubMed ID: 15702342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural contributions to concentric vs. eccentric exercise-induced strength loss.
    Beck TW; Kasishke PR; Stock MS; DeFreitas JM
    J Strength Cond Res; 2012 Mar; 26(3):633-40. PubMed ID: 22207262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical, biochemical, and electromyographic responses to short-term eccentric-concentric knee extensor training in humans.
    Váczi M; Tihanyi J; Hortobágyi T; Rácz L; Csende Z; Costa A; Pucsok J
    J Strength Cond Res; 2011 Apr; 25(4):922-32. PubMed ID: 20651608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.