BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 8964782)

  • 1. Mechanical validation of whole bone composite femur models.
    Cristofolini L; Viceconti M; Cappello A; Toni A
    J Biomech; 1996 Apr; 29(4):525-35. PubMed ID: 8964782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical validation of whole bone composite tibia models.
    Cristofolini L; Viceconti M
    J Biomech; 2000 Mar; 33(3):279-88. PubMed ID: 10673111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of axial-rotational postoperative periprosthetic fracture of the femur in composite osteoporotic femur versus human cadaveric specimens: A validation study.
    Lamb JN; Coltart O; Adekanmbi I; Pandit HG; Stewart T
    Proc Inst Mech Eng H; 2022 Jul; 236(7):973-978. PubMed ID: 35603754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The biomechanical effect of changes in cancellous bone density on synthetic femur behaviour.
    Nicayenzi B; Shah S; Schemitsch EH; Bougherara H; Zdero R
    Proc Inst Mech Eng H; 2011 Nov; 225(11):1050-60. PubMed ID: 22292203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A preliminary biomechanical study of cyclic preconditioning effects on canine cadaveric whole femurs.
    Zdero R; Gallimore CH; McConnell AJ; Patel H; Nisenbaum R; Morshed G; Koo H; McKee MD; Schemitsch EH; Bougherara H
    J Biomech Eng; 2012 Sep; 134(9):094502. PubMed ID: 22938376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural properties of a new design of composite replicate femurs and tibias.
    Heiner AD; Brown TD
    J Biomech; 2001 Jun; 34(6):773-81. PubMed ID: 11470115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical evaluation of large-size fourth-generation composite femur and tibia models.
    Gardner MP; Chong AC; Pollock AG; Wooley PH
    Ann Biomed Eng; 2010 Mar; 38(3):613-20. PubMed ID: 20049637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical screw pullout strength and effective shear stress in synthetic third generation composite femurs.
    Zdero R; Rose S; Schemitsch EH; Papini M
    J Biomech Eng; 2007 Apr; 129(2):289-93. PubMed ID: 17408335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of experimental and finite element models of synthetic and cadaveric femora for pre-clinical design-analysis.
    McNamara BP; Cristofolini L; Toni A; Taylor D
    Clin Mater; 1994; 17(3):131-40. PubMed ID: 10150600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of the Reamer-Irrigator-Aspirator for bone graft harvest: a mechanical comparison of three starting points in cadaveric femurs.
    Finnan RP; Prayson MJ; Goswami T; Miller D
    J Orthop Trauma; 2010 Jan; 24(1):36-41. PubMed ID: 20035176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A biomechanical comparison of composite femurs and cadaver femurs used in experiments on operated hip fractures.
    Basso T; Klaksvik J; Syversen U; Foss OA
    J Biomech; 2014 Dec; 47(16):3898-902. PubMed ID: 25468304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of cortex thickness on intact femur biomechanics: a comparison of finite element analysis with synthetic femurs.
    Zdero R; Bougherara H; Dubov A; Shah S; Zalzal P; Mahfud A; Schemitsch EH
    Proc Inst Mech Eng H; 2010; 224(7):831-40. PubMed ID: 20839651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strain distribution in the proximal femur with flexible composite and metallic femoral components under axial and torsional loads.
    Otani T; Whiteside LA; White SE
    J Biomed Mater Res; 1993 May; 27(5):575-85. PubMed ID: 8314810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of load application rate on the biomechanics of synthetic femurs.
    Zdero R; Shah S; Mosli M; Schemitsch EH
    Proc Inst Mech Eng H; 2010; 224(4):599-605. PubMed ID: 20476507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Biomechanical research of less invasive stabilization system and dynamic condylar screw in fixing subtrochanteric fractures of femur].
    Yang Y; Ma X; Ma J; Zhu S; Ma B; Ji S; Ma T; Chen Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Oct; 26(10):1213-7. PubMed ID: 23167106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repeatability of digital image correlation for measurement of surface strains in composite long bones.
    Väänänen SP; Amin Yavari S; Weinans H; Zadpoor AA; Jurvelin JS; Isaksson H
    J Biomech; 2013 Jul; 46(11):1928-32. PubMed ID: 23791085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of the symmetry of bone strains in the proximal femoral medial cortex under load in bilateral pairs of cadaver femurs.
    Sedlacek RC; O'Connor DO; Lozynsky AJ; Harris WH
    J Arthroplasty; 1997 Sep; 12(6):689-94. PubMed ID: 9306221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of synthetic composite tibias for fracture testing using impact loads.
    Quenneville CE; Greeley GS; Dunning CE
    Proc Inst Mech Eng H; 2010 Oct; 224(10):1195-9. PubMed ID: 21138237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical Comparison of Cadaveric and Commercially Available Synthetic Osteoporotic Bone Analogues in a Locked Plate Fracture Model Under Torsional Loading.
    Becker EH; Kim H; Shorofsky M; Hsieh AH; Watson JD; OʼToole RV
    J Orthop Trauma; 2017 May; 31(5):e137-e142. PubMed ID: 28079730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.