These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 8964783)
1. MR measurement and numerical simulation of steady flow in an end-to-side anastomosis model. Steinman DA; Frayne R; Zhang XD; Rutt BK; Ethier CR J Biomech; 1996 Apr; 29(4):537-42. PubMed ID: 8964783 [TBL] [Abstract][Full Text] [Related]
2. Combined analysis of spatial and velocity displacement artifacts in phase contrast measurements of complex flows. Steinman DA; Ethier CR; Rutt BK J Magn Reson Imaging; 1997; 7(2):339-46. PubMed ID: 9090588 [TBL] [Abstract][Full Text] [Related]
3. Comparative velocity investigations in cerebral arteries and aneurysms: 3D phase-contrast MR angiography, laser Doppler velocimetry and computational fluid dynamics. Hollnagel DI; Summers PE; Poulikakos D; Kollias SS NMR Biomed; 2009 Oct; 22(8):795-808. PubMed ID: 19412933 [TBL] [Abstract][Full Text] [Related]
4. Regularization of flow streamlines in multislice phase-contrast MR imaging. Fatouraee N; Amini AA IEEE Trans Med Imaging; 2003 Jun; 22(6):699-709. PubMed ID: 12872945 [TBL] [Abstract][Full Text] [Related]
5. Peak velocity measurements in tortuous arteries with phase contrast magnetic resonance imaging: the effect of multidirectional velocity encoding. Schubert T; Bieri O; Pansini M; Stippich C; Santini F Invest Radiol; 2014 Apr; 49(4):189-94. PubMed ID: 24300842 [TBL] [Abstract][Full Text] [Related]
6. Effects of intravoxel velocity distributions on the accuracy of the phase-mapping method in phase-contrast MR angiography. Hamilton CA; Moran PR; Santago P; Rajala SA J Magn Reson Imaging; 1994; 4(5):752-5. PubMed ID: 7981522 [TBL] [Abstract][Full Text] [Related]
7. Accuracy of MR phase contrast velocity measurements for unsteady flow. Frayne R; Steinman DA; Ethier CR; Rutt BK J Magn Reson Imaging; 1995; 5(4):428-31. PubMed ID: 7549205 [TBL] [Abstract][Full Text] [Related]
8. Numerical simulations of flow in cerebral aneurysms: comparison of CFD results and in vivo MRI measurements. Rayz VL; Boussel L; Acevedo-Bolton G; Martin AJ; Young WL; Lawton MT; Higashida R; Saloner D J Biomech Eng; 2008 Oct; 130(5):051011. PubMed ID: 19045518 [TBL] [Abstract][Full Text] [Related]
9. Numerical and experimental study of a novel phase contrast magnetic resonance (PC-MR) imaging technique: sparse interleaved referencing PC-MR imaging. Li L; Doyle M; Rayarao G; Biederman RW; Anayiotos A J Magn Reson Imaging; 2008 Apr; 27(4):898-907. PubMed ID: 18383251 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of magnetic resonance velocimetry for steady flow. Ku DN; Biancheri CL; Pettigrew RI; Peifer JW; Markou CP; Engels H J Biomech Eng; 1990 Nov; 112(4):464-72. PubMed ID: 2273875 [TBL] [Abstract][Full Text] [Related]
11. Laser Doppler velocimetry (LDV) and 3D phase-contrast magnetic resonance angiography (PC-MRA) velocity measurements: validation in an anatomically accurate cerebral artery aneurysm model with steady flow. Hollnagel DI; Summers PE; Kollias SS; Poulikakos D J Magn Reson Imaging; 2007 Dec; 26(6):1493-505. PubMed ID: 17968887 [TBL] [Abstract][Full Text] [Related]
12. Complex flow patterns in a real-size intracranial aneurysm phantom: phase contrast MRI compared with particle image velocimetry and computational fluid dynamics. van Ooij P; Guédon A; Poelma C; Schneiders J; Rutten MC; Marquering HA; Majoie CB; VanBavel E; Nederveen AJ NMR Biomed; 2012 Jan; 25(1):14-26. PubMed ID: 21480417 [TBL] [Abstract][Full Text] [Related]
13. In vitro validation of computational fluid dynamic simulation in human proximal airways with hyperpolarized 3He magnetic resonance phase-contrast velocimetry. de Rochefort L; Vial L; Fodil R; Maître X; Louis B; Isabey D; Caillibotte G; Thiriet M; Bittoun J; Durand E; Sbirlea-Apiou G J Appl Physiol (1985); 2007 May; 102(5):2012-23. PubMed ID: 17289906 [TBL] [Abstract][Full Text] [Related]
14. Comparison of velocity-encoded MR imaging and fluid dynamic modeling of steady and disturbed flow. Sun Y; Hearshen DO; Rankin GW; Haggar AM J Magn Reson Imaging; 1992; 2(4):443-52. PubMed ID: 1633398 [TBL] [Abstract][Full Text] [Related]
15. MR imaging of flow through tortuous vessels: a numerical simulation. van Tyen R; Saloner D; Jou LD; Berger S Magn Reson Med; 1994 Feb; 31(2):184-95. PubMed ID: 8133754 [TBL] [Abstract][Full Text] [Related]
16. Numerical simulation of in vitro pulsatile flow and its study using FRISK, a rapid phase contrast technique. Li L; Doyle M; Rayarao G; Kortright E; Ito Y; Anayiotos A J Magn Reson Imaging; 2007 Sep; 26(3):805-15. PubMed ID: 17729352 [TBL] [Abstract][Full Text] [Related]
17. Optimization of MR phase-contrast-based flow velocimetry and shear stress measurements. Kim T; Seo JH; Bang SS; Choi HW; Chang Y; Lee J Int J Cardiovasc Imaging; 2010 Feb; 26 Suppl 1():133-42. PubMed ID: 20039134 [TBL] [Abstract][Full Text] [Related]
18. On the accuracy of EPI-based phase contrast velocimetry. Moser KW; Georgiadis JG; Buckius RO Magn Reson Imaging; 2000 Nov; 18(9):1115-23. PubMed ID: 11118766 [TBL] [Abstract][Full Text] [Related]
19. Comparison of intracranial aneurysm flow quantification techniques: standard PIV vs stereoscopic PIV vs tomographic PIV vs phase-contrast MRI vs CFD. Roloff C; Stucht D; Beuing O; Berg P J Neurointerv Surg; 2019 Mar; 11(3):275-282. PubMed ID: 30061369 [TBL] [Abstract][Full Text] [Related]
20. The accuracy of magnetic resonance phase velocity measurements in stenotic flow. Siegel JM; Oshinski JN; Pettigrew RI; Ku DN J Biomech; 1996 Dec; 29(12):1665-72. PubMed ID: 8945670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]