These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 8965922)

  • 1. [Unusual pathways and environmentally regulated genes of bacterial heme biosynthesis].
    Jahn D; Hungerer C; Troup B
    Naturwissenschaften; 1996 Sep; 83(9):389-400. PubMed ID: 8965922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prokaryotic Heme Biosynthesis: Multiple Pathways to a Common Essential Product.
    Dailey HA; Dailey TA; Gerdes S; Jahn D; Jahn M; O'Brian MR; Warren MJ
    Microbiol Mol Biol Rev; 2017 Mar; 81(1):. PubMed ID: 28123057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The biochemistry of heme biosynthesis.
    Heinemann IU; Jahn M; Jahn D
    Arch Biochem Biophys; 2008 Jun; 474(2):238-51. PubMed ID: 18314007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of heme biosynthesis in Escherichia coli.
    Woodard SI; Dailey HA
    Arch Biochem Biophys; 1995 Jan; 316(1):110-5. PubMed ID: 7840603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in the biosynthesis of modified tetrapyrroles: the discovery of an alternative pathway for the formation of heme and heme d 1.
    Bali S; Palmer DJ; Schroeder S; Ferguson SJ; Warren MJ
    Cell Mol Life Sci; 2014 Aug; 71(15):2837-63. PubMed ID: 24515122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of the biosynthesis of uroporphyrinogen and heme in rat liver during obstructive jaundice produced by bile duct ligation.
    Piper WN; Tse J; Sadler EM; Christenson WR; Balk JL; Kohashi M
    Arch Biochem Biophys; 1986 Apr; 246(1):143-8. PubMed ID: 3963818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosynthesis of uroporphyrinogens from porphobilinogen: mechanism and the nature of the process.
    Frydman B; Frydman RB; Valasinas A; Levy ES; Feinstein G
    Philos Trans R Soc Lond B Biol Sci; 1976 Feb; 273(924):137-60. PubMed ID: 4834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic evidence for a porphobilinogen deaminase-tetrapyrrole complex that is an intermediate in the biosynthesis of uroporphyrinogen III.
    Rosé S; Frydman RB; de los Santos C; Sburlati A; Valasinas A; Frydman B
    Biochemistry; 1988 Jun; 27(13):4871-9. PubMed ID: 3262369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uroporphyrinogen III, an intermediate in the biosynthesis of the nickel-containing factor F430 in Methanobacterium thermoautotrophicum.
    Gilles H; Thauer RK
    Eur J Biochem; 1983 Sep; 135(1):109-12. PubMed ID: 6884352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of rate-limiting steps in yeast heme biosynthesis.
    Hoffman M; Góra M; Rytka J
    Biochem Biophys Res Commun; 2003 Oct; 310(4):1247-53. PubMed ID: 14559249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heme Binding to Porphobilinogen Deaminase from Vibrio cholerae Decelerates the Formation of 1-Hydroxymethylbilane.
    Uchida T; Funamizu T; Chen M; Tanaka Y; Ishimori K
    ACS Chem Biol; 2018 Mar; 13(3):750-760. PubMed ID: 29360345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heme biosynthesis in prokaryotes.
    Layer G
    Biochim Biophys Acta Mol Cell Res; 2021 Jan; 1868(1):118861. PubMed ID: 32976912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separate physiological roles and subcellular compartments for two tetrapyrrole biosynthetic pathways in Euglena gracilis.
    Weinstein JD; Beale SI
    J Biol Chem; 1983 Jun; 258(11):6799-807. PubMed ID: 6133868
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Scott AF; Deery E; Lawrence AD; Warren MJ
    Microbiology (Reading); 2021 Oct; 167(10):. PubMed ID: 34661520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of uroporphyrinogen III, which is the common precursor of all tetrapyrrole cofactors, from 5-aminolevulinic acid by Escherichia coli expressing thermostable enzymes.
    Hibino A; Petri R; Büchs J; Ohtake H
    Appl Microbiol Biotechnol; 2013 Aug; 97(16):7337-44. PubMed ID: 23604563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porphobilinogen deaminase: accumulation and detection of tetrapyrrole intermediates using enzyme immobilization.
    Batlle A
    Methods Enzymol; 2002; 354():368-80. PubMed ID: 12418240
    [No Abstract]   [Full Text] [Related]  

  • 17. Delta-aminolevulinic acid biosynthesis in Ustilago maydis.
    Schneegurt MA
    J Basic Microbiol; 2005; 45(2):155-9. PubMed ID: 15812861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional characterization of the early steps of tetrapyrrole biosynthesis and modification in Desulfovibrio vulgaris Hildenborough.
    Lobo SA; Brindley A; Warren MJ; Saraiva LM
    Biochem J; 2009 May; 420(2):317-25. PubMed ID: 19267692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structures of hydroxymethylbilane synthase complexed with a substrate analog: a single substrate-binding site for four consecutive condensation steps.
    Sato H; Sugishima M; Tsukaguchi M; Masuko T; Iijima M; Takano M; Omata Y; Hirabayashi K; Wada K; Hisaeda Y; Yamamoto K
    Biochem J; 2021 Mar; 478(5):1023-1042. PubMed ID: 33600566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [On uroporphyrinogen formation: Studies with 1-aminomethyl-3, 8, 13, 18-tetra(2-carboxyethyl)-2, 7, 12, 17-tetracarboxymethylbilinogen (author's transl)].
    Dauner HO; Gunzer G; Heger I; Müller G
    Hoppe Seylers Z Physiol Chem; 1976 Feb; 357(2):147-52. PubMed ID: 1254244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.