These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 8967385)

  • 1. Physiological properties of ATP-activated cation channels in rat brain microvascular endothelial cells.
    Janigro D; Nguyen TS; Gordon EL; Winn HR
    Am J Physiol; 1996 Apr; 270(4 Pt 2):H1423-34. PubMed ID: 8967385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP-sensitive K+ channels in rat aorta and brain microvascular endothelial cells.
    Janigro D; West GA; Gordon EL; Winn HR
    Am J Physiol; 1993 Sep; 265(3 Pt 1):C812-21. PubMed ID: 8214038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Significance of endothelial prostacyclin and nitric oxide in peripheral and pulmonary circulation.
    Gryglewski RJ; Chłopicki S; Uracz W; Marcinkiewicz E
    Med Sci Monit; 2001; 7(1):1-16. PubMed ID: 11208485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constitutive nitric oxide production in bovine aortic and brain microvascular endothelial cells: a comparative study.
    Kimura C; Oike M; Ohnaka K; Nose Y; Ito Y
    J Physiol; 2004 Feb; 554(Pt 3):721-30. PubMed ID: 14617679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new ATP-sensitive potassium channel opener protects endothelial function in cultured aortic endothelial cells.
    Wang H; Long C; Duan Z; Shi C; Jia G; Zhang Y
    Cardiovasc Res; 2007 Feb; 73(3):497-503. PubMed ID: 17116295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endothelium-dependent regulation of cerebrovascular tone by extracellular and intracellular ATP.
    Janigro D; Nguyen TS; Meno J; West GA; Winn HR
    Am J Physiol; 1997 Aug; 273(2 Pt 2):H878-85. PubMed ID: 9277506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endothelial cyclic GMP and cyclic AMP do not regulate the release of endothelium-derived relaxing factor/nitric oxide from bovine aortic endothelial cells.
    Kuhn M; Otten A; Frölich JC; Förstermann U
    J Pharmacol Exp Ther; 1991 Feb; 256(2):677-82. PubMed ID: 1847208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation of explanted endothelial cells from mouse aorta: electrophysiology and Ca2+ signalling.
    Suh SH; Vennekens R; Manolopoulos VG; Freichel M; Schweig U; Prenen J; Flockerzi V; Droogmans G; Nilius B
    Pflugers Arch; 1999 Oct; 438(5):612-20. PubMed ID: 10555557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential actions of L-cysteine on responses to nitric oxide, nitroxyl anions and EDRF in the rat aorta.
    Ellis A; Li CG; Rand MJ
    Br J Pharmacol; 2000 Jan; 129(2):315-22. PubMed ID: 10694238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of glibenclamide-sensitive, ATP-dependent K+ channel activation to acetophenone analogues-mediated in vitro pulmonary artery relaxation of rat.
    Seto SW; Ho YY; Hui HN; Au AL; Kwan YW
    Life Sci; 2006 Jan; 78(6):631-9. PubMed ID: 16112684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP and nitric oxide modulate a Ca(2+)-activated non-selective cation current in macrovascular endothelial cells.
    Suh SH; Watanabe H; Droogmans G; Nilius B
    Pflugers Arch; 2002 Jun; 444(3):438-45. PubMed ID: 12111254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bile acids increase intracellular Ca(2+) concentration and nitric oxide production in vascular endothelial cells.
    Nakajima T; Okuda Y; Chisaki K; Shin WS; Iwasawa K; Morita T; Matsumoto A; Suzuki JI; Suzuki S; Yamada N; Toyo-Oka T; Nagai R; Omata M
    Br J Pharmacol; 2000 Aug; 130(7):1457-67. PubMed ID: 10928945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CPA enhances Ca2+ entry in cultured bovine pulmonary arterial endothelial cells in an IP3-independent manner.
    Pasyk E; Inazu M; Daniel EE
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H138-46. PubMed ID: 7530915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Release of nitric oxide from endothelial cells stimulated by YC-1, an activator of soluble guanylyl cyclase.
    Wohlfart P; Malinski T; Ruetten H; Schindler U; Linz W; Schoenafinger K; Strobel H; Wiemer G
    Br J Pharmacol; 1999 Nov; 128(6):1316-22. PubMed ID: 10578147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca(2+)-dependent and Ca(2+)-permeable ion channels in aortic endothelial cells.
    Ling BN; O'Neill WC
    Am J Physiol; 1992 Dec; 263(6 Pt 2):H1827-38. PubMed ID: 1282784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pial microvascular responses to transient bilateral common carotid artery occlusion: effects of hypertonic glycerol.
    Lapi D; Marchiafava PL; Colantuoni A
    J Vasc Res; 2008; 45(2):89-102. PubMed ID: 17934320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vascular smooth muscle influences the release of endothelium-derived relaxing factor.
    Warren JB; Brady AJ; Taylor GW
    Proc Biol Sci; 1990 Aug; 241(1301):127-31. PubMed ID: 1978339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. P2U-receptor mediated endothelium-dependent but nitric oxide-independent vascular relaxation.
    Malmsjö M; Edvinsson L; Erlinge D
    Br J Pharmacol; 1998 Feb; 123(4):719-29. PubMed ID: 9517392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purinoceptors mediate renal vasodilation by nitric oxide dependent and independent mechanisms.
    Rump LC; Oberhauser V; von Kügelgen I
    Kidney Int; 1998 Aug; 54(2):473-81. PubMed ID: 9690214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autocrine and paracrine effects of endothelium-derived relaxing factor on intracellular Ca2+ of endothelial cells and vascular smooth muscle cells. Identification by two-dimensional image analysis in coculture.
    Shin WS; Sasaki T; Kato M; Hara K; Seko A; Yang WD; Shimamoto N; Sugimoto T; Toyo-oka T
    J Biol Chem; 1992 Oct; 267(28):20377-82. PubMed ID: 1400356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.