BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 8967442)

  • 41. PGC-1alpha and PGC-1beta have both similar and distinct effects on myofiber switching toward an oxidative phenotype.
    Mortensen OH; Frandsen L; Schjerling P; Nishimura E; Grunnet N
    Am J Physiol Endocrinol Metab; 2006 Oct; 291(4):E807-16. PubMed ID: 16720625
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Retinoic acid treatment increases lipid oxidation capacity in skeletal muscle of mice.
    Amengual J; Ribot J; Bonet ML; Palou A
    Obesity (Silver Spring); 2008 Mar; 16(3):585-91. PubMed ID: 18239600
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system.
    Reddy JK; Hashimoto T
    Annu Rev Nutr; 2001; 21():193-230. PubMed ID: 11375435
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Suppression of plasma free fatty acids upregulates peroxisome proliferator-activated receptor (PPAR) alpha and delta and PPAR coactivator 1alpha in human skeletal muscle, but not lipid regulatory genes.
    Watt MJ; Southgate RJ; Holmes AG; Febbraio MA
    J Mol Endocrinol; 2004 Oct; 33(2):533-44. PubMed ID: 15525607
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of fatty acids on mitochondrial beta-oxidation enzyme gene expression in renal cell lines.
    Ouali F; Djouadi F; Bastin J
    Am J Physiol Renal Physiol; 2002 Aug; 283(2):F328-34. PubMed ID: 12110517
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Estrogen-related receptor alpha directs peroxisome proliferator-activated receptor alpha signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle.
    Huss JM; Torra IP; Staels B; Giguère V; Kelly DP
    Mol Cell Biol; 2004 Oct; 24(20):9079-91. PubMed ID: 15456881
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The mRNA expression profile of metabolic genes relative to MHC isoform pattern in human skeletal muscles.
    Plomgaard P; Penkowa M; Leick L; Pedersen BK; Saltin B; Pilegaard H
    J Appl Physiol (1985); 2006 Sep; 101(3):817-25. PubMed ID: 16794029
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Differential effects of thyroid hormones on energy metabolism of rat slow- and fast-twitch muscles.
    Bahi L; Garnier A; Fortin D; Serrurier B; Veksler V; Bigard AX; Ventura-Clapier R
    J Cell Physiol; 2005 Jun; 203(3):589-98. PubMed ID: 15605382
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biochemical transformation of canine skeletal muscle for use in cardiac-assist devices.
    Ianuzzo CD; Hamilton N; O'Brien PJ; Desrosiers C; Chiu R
    J Appl Physiol (1985); 1990 Apr; 68(4):1481-5. PubMed ID: 2140828
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The orphan nuclear receptor estrogen-related receptor alpha is a transcriptional regulator of the human medium-chain acyl coenzyme A dehydrogenase gene.
    Sladek R; Bader JA; Giguère V
    Mol Cell Biol; 1997 Sep; 17(9):5400-9. PubMed ID: 9271417
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chronic stimulation of rat skeletal muscle induces coordinate increases in mitochondrial and nuclear mRNAs of cytochrome-c-oxidase subunits.
    Hood DA; Zak R; Pette D
    Eur J Biochem; 1989 Feb; 179(2):275-80. PubMed ID: 2537205
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Adaptation of skeletal muscle to increased contractile activity. Expression nuclear genes encoding mitochondrial proteins.
    Williams RS; Garcia-Moll M; Mellor J; Salmons S; Harlan W
    J Biol Chem; 1987 Feb; 262(6):2764-7. PubMed ID: 2880844
    [TBL] [Abstract][Full Text] [Related]  

  • 53. PPARalpha gene expression in the developing rat kidney: role of glucocorticoids.
    Djouadi F; Bastin J
    J Am Soc Nephrol; 2001 Jun; 12(6):1197-1203. PubMed ID: 11373342
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Women have higher protein content of beta-oxidation enzymes in skeletal muscle than men.
    Maher AC; Akhtar M; Vockley J; Tarnopolsky MA
    PLoS One; 2010 Aug; 5(8):e12025. PubMed ID: 20700461
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Neural control of gene expression in skeletal muscle. Effects of chronic stimulation on lactate dehydrogenase isoenzymes and citrate synthase.
    Seedorf U; Leberer E; Kirschbaum BJ; Pette D
    Biochem J; 1986 Oct; 239(1):115-20. PubMed ID: 2432887
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Differences in metabolic response of dog and goat latissimus dorsi muscle to chronic stimulation.
    Glatz JF; de Jong YF; Coumans WA; Lucas CM; van der Veen FH; van der Vusse GJ
    J Appl Physiol (1985); 1992 Sep; 73(3):806-11. PubMed ID: 1400041
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Adaptation of energy metabolism of canine latissimus dorsi muscle in response to chronic electrical stimulation.
    Glatz JF; van der Vusse GJ; Havenith MG; van der Veen FH; Lucas CM; Penn OC; Wellens HJ
    Pflugers Arch; 1992 Jan; 420(1):1-8. PubMed ID: 1553254
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fatty acid utilization in the hypertrophied and failing heart: molecular regulatory mechanisms.
    Barger PM; Kelly DP
    Am J Med Sci; 1999 Jul; 318(1):36-42. PubMed ID: 10408759
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Canine-specific adaptation of energy metabolism of latissimus dorsi muscle in response to chronic electrical stimulation.
    Glatz JF; van der Vusse GJ; Havenith MG; van der Veen FH; Lucas CM; Penn OC; Wellens HJ
    J Card Surg; 1991 Mar; 6(1 Suppl):265-9. PubMed ID: 1807512
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Correlates of fatigue resistance in canine skeletal muscle stimulated electrically for up to one year.
    Mayne CN; Anderson WA; Hammond RL; Eisenberg BR; Stephenson LW; Salmons S
    Am J Physiol; 1991 Aug; 261(2 Pt 1):C259-70. PubMed ID: 1872371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.