BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 8967745)

  • 1. Benefit of vitamin E, riluzole, and gabapentin in a transgenic model of familial amyotrophic lateral sclerosis.
    Gurney ME; Cutting FB; Zhai P; Doble A; Taylor CP; Andrus PK; Hall ED
    Ann Neurol; 1996 Feb; 39(2):147-57. PubMed ID: 8967745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vitamin E Acetate Is Associated with Select Proinflammatory Cytokines: An Analysis of a 2020-2022 Cohort of EVALI Patients.
    Callahan SJ; Beck E; Blagev D; Harris D; Lanspa M; Brown S; Reilly CA; Paine R; Warren KJ
    Am J Respir Crit Care Med; 2024 Jun; 209(11):1404-1407. PubMed ID: 38530102
    [No Abstract]   [Full Text] [Related]  

  • 3. Riluzole preserves motor function in a transgenic model of familial amyotrophic lateral sclerosis.
    Gurney ME; Fleck TJ; Himes CS; Hall ED
    Neurology; 1998 Jan; 50(1):62-6. PubMed ID: 9443458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of transgenic mouse models of amyotrophic lateral sclerosis in preclinical drug studies.
    Gurney ME
    J Neurol Sci; 1997 Oct; 152 Suppl 1():S67-73. PubMed ID: 9419057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights on Natural Products Against Amyotrophic Lateral Sclerosis (ALS).
    Monteiro KLC; Dos Santos Alcântara MG; de Aquino TM; da Silva-Júnior EF
    Curr Neuropharmacol; 2024; 22(7):1169-1188. PubMed ID: 38708921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Therapeutic targeting of ALS pathways: Refocusing an incomplete picture.
    Maragakis NJ; de Carvalho M; Weiss MD
    Ann Clin Transl Neurol; 2023 Nov; 10(11):1948-1971. PubMed ID: 37641443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CDNF rescues motor neurons in models of amyotrophic lateral sclerosis by targeting endoplasmic reticulum stress.
    De Lorenzo F; Lüningschrör P; Nam J; Beckett L; Pilotto F; Galli E; Lindholm P; Rüdt von Collenberg C; Mungwa ST; Jablonka S; Kauder J; Thau-Habermann N; Petri S; Lindholm D; Saxena S; Sendtner M; Saarma M; Voutilainen MH
    Brain; 2023 Sep; 146(9):3783-3799. PubMed ID: 36928391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomarkers and molecular mechanisms of Amyotrophic Lateral Sclerosis.
    Chakraborty A; Diwan A
    AIMS Neurosci; 2022; 9(4):423-443. PubMed ID: 36660079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Boosting Mitochondrial Potential: An Imperative Therapeutic Intervention in Amyotrophic Lateral Sclerosis.
    Dhasmana S; Dhasmana A; Kotnala S; Mangtani V; Narula AS; Haque S; Jaggi M; Yallapu MM; Chauhan SC
    Curr Neuropharmacol; 2023; 21(5):1117-1138. PubMed ID: 36111770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of various protein similarities using random forest technique to infer augmented drug-protein matrix for enhancing drug-disease association prediction.
    Kitsiranuwat S; Suratanee A; Plaimas K
    Sci Prog; 2022; 105(3):368504221109215. PubMed ID: 35801312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NU-9 improves health of hSOD1
    Genç B; Gautam M; Helmold BR; Koçak N; Günay A; Goshu GM; Silverman RB; Hande Ozdinler P
    Sci Rep; 2022 Mar; 12(1):5383. PubMed ID: 35354901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A chemogenomic approach is required for effective treatment of amyotrophic lateral sclerosis.
    Pampalakis G; Angelis G; Zingkou E; Vekrellis K; Sotiropoulou G
    Clin Transl Med; 2022 Jan; 12(1):e657. PubMed ID: 35064780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dendrimer-2PMPA Delays Muscle Function Loss and Denervation in a Murine Model of Amyotrophic Lateral Sclerosis.
    Tallon C; Sharma A; Zhang Z; Thomas AG; Ng J; Zhu X; Donoghue A; Schulte M; Joe TR; Kambhampati SP; Sharma R; Liaw K; Kannan S; Kannan RM; Slusher BS
    Neurotherapeutics; 2022 Jan; 19(1):274-288. PubMed ID: 34984651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enjoy Carefully: The Multifaceted Role of Vitamin E in Neuro-Nutrition.
    Regner-Nelke L; Nelke C; Schroeter CB; Dziewas R; Warnecke T; Ruck T; Meuth SG
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative Stress as a Therapeutic Target in Amyotrophic Lateral Sclerosis: Opportunities and Limitations.
    Park HR; Yang EJ
    Diagnostics (Basel); 2021 Aug; 11(9):. PubMed ID: 34573888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Systematic Review of Oropharyngeal Dysphagia Models in Rodents.
    Kim HN; Kim JY
    Int J Environ Res Public Health; 2021 May; 18(9):. PubMed ID: 34067192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Interplay of RNA Binding Proteins, Oxidative Stress and Mitochondrial Dysfunction in ALS.
    Harley J; Clarke BE; Patani R
    Antioxidants (Basel); 2021 Apr; 10(4):. PubMed ID: 33918215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A State of the Art of Antioxidant Properties of Curcuminoids in Neurodegenerative Diseases.
    Silvestro S; Sindona C; Bramanti P; Mazzon E
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33804658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative Stress in Amyotrophic Lateral Sclerosis: Pathophysiology and Opportunities for Pharmacological Intervention.
    Cunha-Oliveira T; Montezinho L; Mendes C; Firuzi O; Saso L; Oliveira PJ; Silva FSG
    Oxid Med Cell Longev; 2020; 2020():5021694. PubMed ID: 33274002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of vitamins by participants in amyotrophic lateral sclerosis clinical trials.
    Prell T; Grosskreutz J;
    PLoS One; 2020; 15(8):e0237175. PubMed ID: 32790757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.