These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 8967877)
21. [The research advancement and the application foreground of 2-methacryloyloxyethyl phosphorylcholine polymer membranes]. Wang C; Wang Z; Cao L; Jiang P; Guo C Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Apr; 24(2):470-3. PubMed ID: 17591285 [TBL] [Abstract][Full Text] [Related]
22. Platelet adhesion on the gradient surfaces grafted with phospholipid polymer. Iwasaki Y; Ishihara K; Nakabayashi N; Khang G; Jeon JH; Lee JW; Lee HB J Biomater Sci Polym Ed; 1998; 9(8):801-16. PubMed ID: 9724895 [TBL] [Abstract][Full Text] [Related]
23. Design of functional hollow fiber membranes modified with phospholipid polymers for application in total hemopurification system. Ye SH; Watanabe J; Takai M; Iwasaki Y; Ishihara K Biomaterials; 2005 Aug; 26(24):5032-41. PubMed ID: 15769539 [TBL] [Abstract][Full Text] [Related]
24. Cellulose acetate hollow fiber membranes blended with phospholipid polymer and their performance for hemopurification. Ye SH; Watanabe J; Ishihara K J Biomater Sci Polym Ed; 2004; 15(8):981-1001. PubMed ID: 15461185 [TBL] [Abstract][Full Text] [Related]
25. Effects of molecular architecture of phospholipid polymers on surface modification of segmented polyurethanes. Liu Y; Inoue Y; Sakata S; Kakinoki S; Yamaoka T; Ishihara K J Biomater Sci Polym Ed; 2014; 25(5):474-86. PubMed ID: 24417469 [TBL] [Abstract][Full Text] [Related]
26. Effect of reduced protein adsorption on platelet adhesion at the phospholipid polymer surfaces. Iwasaki Y; Kurita K; Ishihara K; Nakabayashi N J Biomater Sci Polym Ed; 1996; 8(2):151-63. PubMed ID: 8957711 [TBL] [Abstract][Full Text] [Related]
27. Durable modification of segmented polyurethane for elastic blood-contacting devices by graft-type 2-methacryloyloxyethyl phosphorylcholine copolymer. Liu Y; Inoue Y; Mahara A; Kakinoki S; Yamaoka T; Ishihara K J Biomater Sci Polym Ed; 2014; 25(14-15):1514-29. PubMed ID: 24894706 [TBL] [Abstract][Full Text] [Related]
28. Covalent attachment of phospholipid analogous polymers to modify a polymeric membrane surface: a novel approach. Xu ZK; Dai QW; Wu J; Huang XJ; Yang Q Langmuir; 2004 Feb; 20(4):1481-8. PubMed ID: 15803738 [TBL] [Abstract][Full Text] [Related]
29. Semi-interpenetrating polymer networks composed of biocompatible phospholipid polymer and segmented polyurethane. Iwasaki Y; Aiba Y; Morimoto N; Nakabayashi N; Ishihara K J Biomed Mater Res; 2000 Dec; 52(4):701-8. PubMed ID: 11033553 [TBL] [Abstract][Full Text] [Related]
30. Effects of phospholipid adsorption on nonthrombogenicity of polymer with phospholipid polar group. Ishihara K; Oshida H; Endo Y; Watanabe A; Ueda T; Nakabayashi N J Biomed Mater Res; 1993 Oct; 27(10):1309-14. PubMed ID: 8245045 [TBL] [Abstract][Full Text] [Related]
31. Protein adsorption and platelet adhesion on polymer surfaces having phospholipid polar group connected with oxyethylene chain. Iwasaki Y; Fujiike A; Kurita K; Ishihara K; Nakabayashi N J Biomater Sci Polym Ed; 1996; 8(2):91-102. PubMed ID: 8957706 [TBL] [Abstract][Full Text] [Related]
32. Improvement of blood compatibility on cellulose dialysis membrane. I. Grafting of 2-methacryloyloxyethyl phosphorylcholine on to a cellulose membrane surface. Ishihara K; Nakabayashi N; Fukumoto K; Aoki J Biomaterials; 1992; 13(3):145-9. PubMed ID: 1567938 [TBL] [Abstract][Full Text] [Related]
33. Protein adsorption-resistant hollow fibers for blood purification. Ishihara K; Hasegawa T; Watanabe J; Iwasaki Y Artif Organs; 2002 Dec; 26(12):1014-9. PubMed ID: 12460378 [TBL] [Abstract][Full Text] [Related]
34. Asymmetrically functional surface properties on biocompatible phospholipid polymer membrane for bioartificial kidney. Ueda H; Watanabe J; Konno T; Takai M; Saito A; Ishihara K J Biomed Mater Res A; 2006 Apr; 77(1):19-27. PubMed ID: 16345080 [TBL] [Abstract][Full Text] [Related]
35. Biomembrane mimetic polymer poly (2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) at the interface of polyurethane surfaces. Lee I; Kobayashi K; Sun HY; Takatani S; Zhong LG J Biomed Mater Res A; 2007 Aug; 82(2):316-22. PubMed ID: 17295222 [TBL] [Abstract][Full Text] [Related]
36. Physical properties and blood compatibility of surface-modified segmented polyurethane by semi-interpenetrating polymer networks with a phospholipid polymer. Morimoto N; Iwasaki Y; Nakabayashi N; Ishihara K Biomaterials; 2002 Dec; 23(24):4881-7. PubMed ID: 12361629 [TBL] [Abstract][Full Text] [Related]
37. Synthesis and characterisation of cationically modified phospholipid polymers. Lewis AL; Berwick J; Davies MC; Roberts CJ; Wang JH; Small S; Dunn A; O'Byrne V; Redman RP; Jones SA Biomaterials; 2004 Jul; 25(15):3099-108. PubMed ID: 14967544 [TBL] [Abstract][Full Text] [Related]
38. Hemocompatibility on graft copolymers composed of poly(2-methacryloyloxyethyl phosphorylcholine) side chain and poly(n-butyl methacrylate) backbone. Ishihara K; Tsuji T; Kurosaki T; Nakabayashi N J Biomed Mater Res; 1994 Feb; 28(2):225-32. PubMed ID: 8207035 [TBL] [Abstract][Full Text] [Related]
39. Interaction between phospholipids and biocompatible polymers containing a phosphorylcholine moiety. Kojima M; Ishihara K; Watanabe A; Nakabayashi N Biomaterials; 1991 Mar; 12(2):121-4. PubMed ID: 1878446 [TBL] [Abstract][Full Text] [Related]
40. Methacrylate polymer layers bearing poly(ethylene oxide) and phosphorylcholine side chains as non-fouling surfaces: in vitro interactions with plasma proteins and platelets. Feng W; Gao X; McClung G; Zhu S; Ishihara K; Brash JL Acta Biomater; 2011 Oct; 7(10):3692-9. PubMed ID: 21693202 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]