These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 8967962)
1. Overlapping drug interaction sites of human butyrylcholinesterase dissected by site-directed mutagenesis. Loewenstein-Lichtenstein Y; Glick D; Gluzman N; Sternfeld M; Zakut H; Soreq H Mol Pharmacol; 1996 Dec; 50(6):1423-31. PubMed ID: 8967962 [TBL] [Abstract][Full Text] [Related]
2. Chimeric human cholinesterase. Identification of interaction sites responsible for recognition of acetyl- or butyrylcholinesterase-specific ligands. Loewenstein Y; Gnatt A; Neville LF; Soreq H J Mol Biol; 1993 Nov; 234(2):289-96. PubMed ID: 8230213 [TBL] [Abstract][Full Text] [Related]
3. Histochemical demonstration of acetylcholinesterase activity in human Meibomian glands. Perra MT; Serra A; Sirigu P; Turno F Eur J Histochem; 1996; 40(1):39-44. PubMed ID: 8741098 [TBL] [Abstract][Full Text] [Related]
4. Does "butyrylization" of acetylcholinesterase through substitution of the six divergent aromatic amino acids in the active center gorge generate an enzyme mimic of butyrylcholinesterase? Kaplan D; Ordentlich A; Barak D; Ariel N; Kronman C; Velan B; Shafferman A Biochemistry; 2001 Jun; 40(25):7433-45. PubMed ID: 11412096 [TBL] [Abstract][Full Text] [Related]
5. Development of molecular probes for the identification of extra interaction sites in the mid-gorge and peripheral sites of butyrylcholinesterase (BuChE). Rational design of novel, selective, and highly potent BuChE inhibitors. Campiani G; Fattorusso C; Butini S; Gaeta A; Agnusdei M; Gemma S; Persico M; Catalanotti B; Savini L; Nacci V; Novellino E; Holloway HW; Greig NH; Belinskaya T; Fedorko JM; Saxena A J Med Chem; 2005 Mar; 48(6):1919-29. PubMed ID: 15771436 [TBL] [Abstract][Full Text] [Related]
6. The acetylcholinesterase inhibitor BW284c51 is a potent blocker of Torpedo nicotinic AchRs incorporated into the Xenopus oocyte membrane. Olivera-Bravo S; Ivorra I; Morales A Br J Pharmacol; 2005 Jan; 144(1):88-97. PubMed ID: 15644872 [TBL] [Abstract][Full Text] [Related]
7. Acetylcholinesterase and butyrylcholinesterase activity in the atria of the heart of adult albino rats. Slavíková J; Vlk J; Hlavicková V Physiol Bohemoslov; 1982; 31(5):407-14. PubMed ID: 6217470 [TBL] [Abstract][Full Text] [Related]
8. Aspartate-70 to glycine substitution confers resistance to naturally occurring and synthetic anionic-site ligands on in-ovo produced human butyrylcholinesterase. Neville LF; Gnatt A; Loewenstein Y; Soreq H J Neurosci Res; 1990 Dec; 27(4):452-60. PubMed ID: 2079709 [TBL] [Abstract][Full Text] [Related]
9. Conversion of acetylcholinesterase to butyrylcholinesterase: modeling and mutagenesis. Harel M; Sussman JL; Krejci E; Bon S; Chanal P; Massoulié J; Silman I Proc Natl Acad Sci U S A; 1992 Nov; 89(22):10827-31. PubMed ID: 1438284 [TBL] [Abstract][Full Text] [Related]
10. Preparation, in vitro screening and molecular modelling of symmetrical bis-quinolinium cholinesterase inhibitors--implications for early myasthenia gravis treatment. Komloova M; Musilek K; Horova A; Holas O; Dohnal V; Gunn-Moore F; Kuca K Bioorg Med Chem Lett; 2011 Apr; 21(8):2505-9. PubMed ID: 21397501 [TBL] [Abstract][Full Text] [Related]
11. Differences in active site gorge dimensions of cholinesterases revealed by binding of inhibitors to human butyrylcholinesterase. Saxena A; Redman AM; Jiang X; Lockridge O; Doctor BP Biochemistry; 1997 Dec; 36(48):14642-51. PubMed ID: 9398183 [TBL] [Abstract][Full Text] [Related]
13. Reduced acetylcholine receptor density, morphological remodeling, and butyrylcholinesterase activity can sustain muscle function in acetylcholinesterase knockout mice. Adler M; Manley HA; Purcell AL; Deshpande SS; Hamilton TA; Kan RK; Oyler G; Lockridge O; Duysen EG; Sheridan RE Muscle Nerve; 2004 Sep; 30(3):317-27. PubMed ID: 15318343 [TBL] [Abstract][Full Text] [Related]
14. Specific targeting of acetylcholinesterase and butyrylcholinesterase recognition sites. Rational design of novel, selective, and highly potent cholinesterase inhibitors. Savini L; Gaeta A; Fattorusso C; Catalanotti B; Campiani G; Chiasserini L; Pellerano C; Novellino E; McKissic D; Saxena A J Med Chem; 2003 Jan; 46(1):1-4. PubMed ID: 12502352 [TBL] [Abstract][Full Text] [Related]
15. Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate. Johnson JL; Cusack B; Davies MP; Fauq A; Rosenberry TL Biochemistry; 2003 May; 42(18):5438-52. PubMed ID: 12731886 [TBL] [Abstract][Full Text] [Related]
16. Butyrylcholinesterase and the control of synaptic responses in acetylcholinesterase knockout mice. Girard E; Bernard V; Minic J; Chatonnet A; Krejci E; Molgó J Life Sci; 2007 May; 80(24-25):2380-5. PubMed ID: 17467011 [TBL] [Abstract][Full Text] [Related]
17. The aryl acylamidase activity is much more sensitive to Alzheimer drugs than the esterase activity of acetylcholinesterase in chicken embryonic brain. Rajesh RV; Chitra L; Layer PG; Boopathy R Biochimie; 2009 Sep; 91(9):1087-94. PubMed ID: 19607873 [TBL] [Abstract][Full Text] [Related]
18. Nippostrongylus brasiliensis: characterisation of a somatic amphiphilic acetylcholinesterase with properties distinct from the secreted enzymes. Hussein AS; Grigg ME; Selkirk ME Exp Parasitol; 1999 Feb; 91(2):144-50. PubMed ID: 9990342 [TBL] [Abstract][Full Text] [Related]
19. Acetylcholinesterase active centre and gorge conformations analysed by combinatorial mutations and enantiomeric phosphonates. Kovarik Z; Radić Z; Berman HA; Simeon-Rudolf V; Reiner E; Taylor P Biochem J; 2003 Jul; 373(Pt 1):33-40. PubMed ID: 12665427 [TBL] [Abstract][Full Text] [Related]