These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 8968377)
1. Vascular expression of inducible nitric oxide synthase is associated with activation of Ca(++)-dependent K+ channels. Taguchi H; Heistad DD; Chu Y; Rios CD; Ooboshi H; Faraci FM J Pharmacol Exp Ther; 1996 Dec; 279(3):1514-9. PubMed ID: 8968377 [TBL] [Abstract][Full Text] [Related]
2. Abnormal activation of K+ channels underlies relaxation to bacterial lipopolysaccharide in rat aorta. Hall S; Turcato S; Clapp L Biochem Biophys Res Commun; 1996 Jul; 224(1):184-90. PubMed ID: 8694810 [TBL] [Abstract][Full Text] [Related]
3. Inducible nitric oxide synthase and vascular reactivity in rat thoracic aorta: effect of aminoguanidine. Scott JA; Machoun M; McCormack DG J Appl Physiol (1985); 1996 Jan; 80(1):271-7. PubMed ID: 8847314 [TBL] [Abstract][Full Text] [Related]
4. Induction of nitric oxide synthase by endotoxin in rat isolated aorta but not in rat aortic smooth muscle cells grown in culture from explant. McKendrick JD; Paisley K; Eason S; Mian KB; Martin W Arch Int Pharmacodyn Ther; 1995; 330(2):206-24. PubMed ID: 8861713 [TBL] [Abstract][Full Text] [Related]
6. Aminoguanidine selectively decreases cyclic GMP levels produced by inducible nitric oxide synthase. Griffiths MJ; Messent M; Curzen NP; Evans TW Am J Respir Crit Care Med; 1995 Nov; 152(5 Pt 1):1599-604. PubMed ID: 7582301 [TBL] [Abstract][Full Text] [Related]
7. The lazaroid, U-74389G, inhibits inducible nitric oxide synthase activity, reverses vascular failure and protects against endotoxin shock. Altavilla D; Squadrito F; Campo GM; Squadrito G; Arlotta M; Urna G; Sardella A; Quartarone C; Saitta A; Caputi AP Eur J Pharmacol; 1999 Mar; 369(1):49-55. PubMed ID: 10204681 [TBL] [Abstract][Full Text] [Related]
8. A xanthine-based KMUP-1 with cyclic GMP enhancing and K(+) channels opening activities in rat aortic smooth muscle. Wu BN; Lin RJ; Lin CY; Shen KP; Chiang LC; Chen IJ Br J Pharmacol; 2001 Sep; 134(2):265-74. PubMed ID: 11564644 [TBL] [Abstract][Full Text] [Related]
9. Endothelium-dependent vascular hyporesponsiveness without detection of nitric oxide synthase induction in aortas of cirrhotic rats. Weigert AL; Martin PY; Niederberger M; Higa EM; McMurtry IF; Gines P; Schrier RW Hepatology; 1995 Dec; 22(6):1856-62. PubMed ID: 7489998 [TBL] [Abstract][Full Text] [Related]
10. An in vitro study of corpus cavernosum and aorta from mice lacking the inducible nitric oxide synthase gene. Nangle MR; Cotter MA; Cameron NE Nitric Oxide; 2003 Dec; 9(4):194-200. PubMed ID: 14996426 [TBL] [Abstract][Full Text] [Related]
11. Activation of protein kinase B/Akt and endothelial nitric oxide synthase mediates agmatine-induced endothelium-dependent relaxation. Santhanam AV; Viswanathan S; Dikshit M Eur J Pharmacol; 2007 Oct; 572(2-3):189-96. PubMed ID: 17640632 [TBL] [Abstract][Full Text] [Related]
12. Ketamine stereoselectively affects vasorelaxation mediated by ATP-sensitive K(+) channels in the rat aorta. Dojo M; Kinoshita H; Iranami H; Nakahata K; Kimoto Y; Hatano Y Anesthesiology; 2002 Oct; 97(4):882-6. PubMed ID: 12357154 [TBL] [Abstract][Full Text] [Related]
13. Involvement of ATP-sensitive potassium channels in a model of a delayed vascular hyporeactivity induced by lipopolysaccharide in rats. Sorrentino R; d'Emmanuele di Villa Bianca R; Lippolis L; Sorrentino L; Autore G; Pinto A Br J Pharmacol; 1999 Jul; 127(6):1447-53. PubMed ID: 10455295 [TBL] [Abstract][Full Text] [Related]
14. Suppression of inducible nitric oxide synthase mRNA expression by tryptoquinone A. Niwa M; Tsutsumishita Y; Kawai Y; Takahara H; Nakamura N; Futaki S; Takaishi Y; Kondoh W; Moritoki H Biochem Biophys Res Commun; 1996 Jul; 224(2):579-85. PubMed ID: 8702429 [TBL] [Abstract][Full Text] [Related]
15. Vasorelaxant effects of Cerebralcare Granule® are mediated by NO/cGMP pathway, potassium channel opening and calcium channel blockade in isolated rat thoracic aorta. Qu Z; Zhang J; Gao W; Chen H; Guo H; Wang T; Li H; Liu C J Ethnopharmacol; 2014 Aug; 155(1):572-9. PubMed ID: 24924524 [TBL] [Abstract][Full Text] [Related]
16. Enhanced phenylephrine-induced rhythmic activity in the atherosclerotic mouse aorta via an increase in opening of KCa channels: relation to Kv channels and nitric oxide. Jiang J; Thorén P; Caligiuri G; Hansson GK; Pernow J Br J Pharmacol; 1999 Oct; 128(3):637-46. PubMed ID: 10516643 [TBL] [Abstract][Full Text] [Related]
17. Effect of phenylephrine and endothelium on vasomotion in rat aorta involves potassium uptake. Palacios J; Vega JL; Paredes A; Cifuentes F J Physiol Sci; 2013 Mar; 63(2):103-11. PubMed ID: 23180009 [TBL] [Abstract][Full Text] [Related]
18. Role of potassium channels in the nitrergic nerve stimulation-induced vasodilatation in the guinea-pig isolated basilar artery. Jiang F; Li CG; Rand MJ Br J Pharmacol; 1998 Jan; 123(1):106-12. PubMed ID: 9484860 [TBL] [Abstract][Full Text] [Related]
19. Effect of melatonin in the rat tail artery: role of K+ channels and endothelial factors. Geary GG; Duckles SP; Krause DN Br J Pharmacol; 1998 Apr; 123(8):1533-40. PubMed ID: 9605558 [TBL] [Abstract][Full Text] [Related]
20. Endotoxin-induced vascular hyporesponsiveness in rat aorta: in vitro effect of aminoguanidine. Ulker S; Cinar MG; Can C; Evinç A; Koşay S Pharmacol Res; 2001 Jul; 44(1):22-7. PubMed ID: 11428906 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]