These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 8968523)
1. Synthesis and characterization of segmented polyurethanes based on amphiphilic polyether diols. Lan PN; Corneillie S; Schacht E; Davies M; Shard A Biomaterials; 1996 Dec; 17(23):2273-80. PubMed ID: 8968523 [TBL] [Abstract][Full Text] [Related]
2. [Synthesis, characterization and blood compatibility studies of waterproof breathable polyurethanes]. Wang P; Luo J; Du M; He C; Fan C; Zhong Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Aug; 22(4):734-8. PubMed ID: 16156261 [TBL] [Abstract][Full Text] [Related]
3. Synthesis, characterizations and biocompatibility of alternating block polyurethanes based on P3/4HB and PPG-PEG-PPG. Li G; Li P; Qiu H; Li D; Su M; Xu K J Biomed Mater Res A; 2011 Jul; 98(1):88-99. PubMed ID: 21538829 [TBL] [Abstract][Full Text] [Related]
4. Mathematical modeling and experimental study of mechanical properties of chitosan based polyurethanes: Effect of diisocyanate nature by mixture design approach. Javaid MA; Younas M; Zafar I; Khera RA; Zia KM; Jabeen S Int J Biol Macromol; 2019 Mar; 124():321-330. PubMed ID: 30465837 [TBL] [Abstract][Full Text] [Related]
5. Biodegradable polyurethanes for implants. II. In vitro degradation and calcification of materials from poly(epsilon-caprolactone)-poly(ethylene oxide) diols and various chain extenders. Gorna K; Gogolewski S J Biomed Mater Res; 2002 Jun; 60(4):592-606. PubMed ID: 11948518 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of a novel biomedical poly(ester urethane) based on aliphatic uniform-size diisocyanate and the blood compatibility of PEG-grafted surfaces. Liu X; Xia Y; Liu L; Zhang D; Hou Z J Biomater Appl; 2018 May; 32(10):1329-1342. PubMed ID: 29547018 [TBL] [Abstract][Full Text] [Related]
8. PDMS-based polyurethanes with MPEG grafts: synthesis, characterization and platelet adhesion study. Park JH; Park KD; Bae YH Biomaterials; 1999 May; 20(10):943-53. PubMed ID: 10353648 [TBL] [Abstract][Full Text] [Related]
9. Effect of the hard segment chemistry and structure on the thermal and mechanical properties of novel biomedical segmented poly(esterurethanes). Caracciolo PC; Buffa F; Abraham GA J Mater Sci Mater Med; 2009 Jan; 20(1):145-55. PubMed ID: 18704646 [TBL] [Abstract][Full Text] [Related]
10. Alternative block polyurethanes based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(ethylene glycol). Pan J; Li G; Chen Z; Chen X; Zhu W; Xu K Biomaterials; 2009 Jun; 30(16):2975-84. PubMed ID: 19230967 [TBL] [Abstract][Full Text] [Related]
11. Nonfouling biomaterials based on polyethylene oxide-containing amphiphilic triblock copolymers as surface modifying additives: solid state structure of PEO-copolymer/polyurethane blends. Tan J; Brash JL J Biomed Mater Res A; 2008 Jun; 85(4):862-72. PubMed ID: 17896775 [TBL] [Abstract][Full Text] [Related]
12. Synthesis, characterization and biocompatibility of biodegradable elastomeric poly(ether-ester urethane)s Based on Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(ethylene glycol) via melting polymerization. Li Z; Yang X; Wu L; Chen Z; Lin Y; Xu K; Chen GQ J Biomater Sci Polym Ed; 2009; 20(9):1179-202. PubMed ID: 19520007 [TBL] [Abstract][Full Text] [Related]
13. Novel dendrimer based polyurethanes for PEO incorporation. Duan X; Griffith CM; Dubé MA; Sheardown H J Biomater Sci Polym Ed; 2002; 13(6):667-89. PubMed ID: 12182551 [TBL] [Abstract][Full Text] [Related]
14. Effects of types and length of soft-segments on the physical properties and blood compatibility of polyurethanes. Chang CH; Tsao CT; Chang KY; Chen SH; Han JL; Hsieh KH Biomed Mater Eng; 2012; 22(6):373-82. PubMed ID: 23114466 [TBL] [Abstract][Full Text] [Related]
15. Biodegradable hyperbranched amphiphilic polyurethane multiblock copolymers consisting of poly(propylene glycol), poly(ethylene glycol), and polycaprolactone as in situ thermogels. Li Z; Zhang Z; Liu KL; Ni X; Li J Biomacromolecules; 2012 Dec; 13(12):3977-89. PubMed ID: 23167676 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of biocompatible segmented polyurethanes from aliphatic diisocyanates and diurea diol chain extenders. Guelcher SA; Gallagher KM; Didier JE; Klinedinst DB; Doctor JS; Goldstein AS; Wilkes GL; Beckman EJ; Hollinger JO Acta Biomater; 2005 Jul; 1(4):471-84. PubMed ID: 16701828 [TBL] [Abstract][Full Text] [Related]
17. New aliphatic glycerophosphoryl-containing polyurethanes: synthesis, platelet adhesion and elution cytotoxicity studies. Acetti D; D'Arrigo P; Giordano C; Macchi P; Servi S; Tessaro D Int J Artif Organs; 2009 Apr; 32(4):204-12. PubMed ID: 19569028 [TBL] [Abstract][Full Text] [Related]
18. A new haemocompatible phospholipid polyurethane based on hydrogenated poly(isoprene) soft segment. Li YJ; Bahulekar R; Wang YF; Chen TM; Kitamura M; Kodama M; Nakaya T J Biomater Sci Polym Ed; 1996; 7(10):893-904. PubMed ID: 8836835 [TBL] [Abstract][Full Text] [Related]
19. Phase studies of a urethane model compound and polyether macroglycols by infrared spectroscopy and the relationship between eutectic composition of soft segment and blood compatibility. Isama K; Kojima S; Nakamura A J Biomed Mater Res; 1993 Apr; 27(4):539-45. PubMed ID: 8463355 [TBL] [Abstract][Full Text] [Related]
20. The effects of soft segment structure on the fatigue crack propagation of model polyurethanes. Kim HJ; Benson RS Biomed Mater Eng; 1994; 4(3):171-85. PubMed ID: 7950866 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]