BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 8968593)

  • 1. Poloxamer 188 decreases susceptibility of artificial lipid membranes to electroporation.
    Sharma V; Stebe K; Murphy JC; Tung L
    Biophys J; 1996 Dec; 71(6):3229-41. PubMed ID: 8968593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in electroporation thresholds of lipid membranes by surfactants and peptides.
    Tung L; Troiano GC; Sharma V; Raphael RM; Stebe KJ
    Ann N Y Acad Sci; 1999 Oct; 888():249-65. PubMed ID: 10842637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The reduction in electroporation voltages by the addition of a surfactant to planar lipid bilayers.
    Troiano GC; Tung L; Sharma V; Stebe KJ
    Biophys J; 1998 Aug; 75(2):880-8. PubMed ID: 9675188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time courses of cell electroporation as revealed by submicrosecond imaging of transmembrane potential.
    Hibino M; Itoh H; Kinosita K
    Biophys J; 1993 Jun; 64(6):1789-800. PubMed ID: 8369408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of gramicidin on electroporation of lipid bilayers.
    Troiano GC; Stebe KJ; Raphael RM; Tung L
    Biophys J; 1999 Jun; 76(6):3150-7. PubMed ID: 10354439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inter-pulse interval between rectangular voltage pulses affects electroporation threshold of artificial lipid bilayers.
    Lebar AM; Troiano GC; Tung L; Miklavcic D
    IEEE Trans Nanobioscience; 2002 Sep; 1(3):116-20. PubMed ID: 16696301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electroporation of subcutaneous mouse tumors by rectangular and trapezium high voltage pulses.
    Pliquett U; Elez R; Piiper A; Neumann E
    Bioelectrochemistry; 2004 Apr; 62(1):83-93. PubMed ID: 14990329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The conductance of cellular membranes at supra-physiological voltages.
    Wegner LH
    Bioelectrochemistry; 2015 Jun; 103():34-8. PubMed ID: 25246349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The electrical breakdown of cell and lipid membranes: the similarity of phenomenologies.
    Chernomordik LV; Sukharev SI; Popov SV; Pastushenko VF; Sokirko AV; Abidor IG; Chizmadzhev YA
    Biochim Biophys Acta; 1987 Sep; 902(3):360-73. PubMed ID: 3620466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of single-cell electroporation by using patch-clamp and fluorescence microscopy.
    Ryttsén F; Farre C; Brennan C; Weber SG; Nolkrantz K; Jardemark K; Chiu DT; Orwar O
    Biophys J; 2000 Oct; 79(4):1993-2001. PubMed ID: 11023903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A critical evaluation of whole cell patch clamp studies on electroporation using the voltage sensitive dye ANNINE-6.
    Wegner LH; Frey W; Schönwälder S
    Bioelectrochemistry; 2013 Aug; 92():42-6. PubMed ID: 23603150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of the lipid bilayer breakdown voltage by means of linear rising signal.
    Kramar P; Miklavcic D; Lebar AM
    Bioelectrochemistry; 2007 Jan; 70(1):23-7. PubMed ID: 16713748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge-pulse relaxation studies with lipid bilayer membranes modified by alamethicin.
    Boheim G; Benz R
    Biochim Biophys Acta; 1978 Feb; 507(2):262-70. PubMed ID: 626734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible electrical breakdown of lipid bilayer membranes: a charge-pulse relaxation study.
    Benz R; Beckers F; Zimmermann U
    J Membr Biol; 1979 Jul; 48(2):181-204. PubMed ID: 480336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroporation of cardiac cell membranes with monophasic or biphasic rectangular pulses.
    Tovar O; Tung L
    Pacing Clin Electrophysiol; 1991 Nov; 14(11 Pt 2):1887-92. PubMed ID: 1721194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electroporation of archaeal lipid membranes using MD simulations.
    Polak A; Tarek M; Tomšič M; Valant J; Ulrih NP; Jamnik A; Kramar P; Miklavčič D
    Bioelectrochemistry; 2014 Dec; 100():18-26. PubMed ID: 24461702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electro-optics of membrane electroporation in diphenylhexatriene-doped lipid bilayer vesicles.
    Kakorin S; Stoylov SP; Neumann E
    Biophys Chem; 1996 Jan; 58(1-2):109-16. PubMed ID: 8679914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of pore size during irreversible electrical breakdown of lipid bilayer membranes.
    Wilhelm C; Winterhalter M; Zimmermann U; Benz R
    Biophys J; 1993 Jan; 64(1):121-8. PubMed ID: 8431536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue electroporation. Observation of reversible electrical breakdown in viable frog skin.
    Powell KT; Morgenthaler AW; Weaver JC
    Biophys J; 1989 Dec; 56(6):1163-71. PubMed ID: 2611330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of lipid electropores I: Molecular dynamics simulations of stabilized pores by constant charge imbalance.
    Casciola M; Kasimova MA; Rems L; Zullino S; Apollonio F; Tarek M
    Bioelectrochemistry; 2016 Jun; 109():108-16. PubMed ID: 26883056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.