These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 8968617)

  • 1. Ryanodine receptor adaptation and Ca2+(-)induced Ca2+ release-dependent Ca2+ oscillations.
    Keizer J; Levine L
    Biophys J; 1996 Dec; 71(6):3477-87. PubMed ID: 8968617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ortho-substituted polychlorinated biphenyls alter calcium regulation by a ryanodine receptor-mediated mechanism: structural specificity toward skeletal- and cardiac-type microsomal calcium release channels.
    Wong PW; Pessah IN
    Mol Pharmacol; 1996 Apr; 49(4):740-51. PubMed ID: 8609904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of ryanodine receptor channels to Ca2+ steps produced by rapid solution exchange.
    Laver DR; Curtis BA
    Biophys J; 1996 Aug; 71(2):732-41. PubMed ID: 8842211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneity of Ca2+ gating of skeletal muscle and cardiac ryanodine receptors.
    Copello JA; Barg S; Onoue H; Fleischer S
    Biophys J; 1997 Jul; 73(1):141-56. PubMed ID: 9199779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct evidence for the existence and functional role of hyperreactive sulfhydryls on the ryanodine receptor-triadin complex selectively labeled by the coumarin maleimide 7-diethylamino-3-(4'-maleimidylphenyl)-4-methylcoumarin.
    Liu G; Abramson JJ; Zable AC; Pessah IN
    Mol Pharmacol; 1994 Feb; 45(2):189-200. PubMed ID: 8114670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chloride-dependent sarcoplasmic reticulum Ca2+ release correlates with increased Ca2+ activation of ryanodine receptors.
    Fruen BR; Kane PK; Mickelson JR; Louis CF
    Biophys J; 1996 Nov; 71(5):2522-30. PubMed ID: 8913591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of ryanodine receptor channels in Ca2+ oscillations of porcine tracheal smooth muscle.
    Kannan MS; Prakash YS; Brenner T; Mickelson JR; Sieck GC
    Am J Physiol; 1997 Apr; 272(4 Pt 1):L659-64. PubMed ID: 9142939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of chloride-dependent release of Ca2+ in the sarcoplasmic reticulum of rabbit skeletal muscle.
    Sukhareva M; Morrissette J; Coronado R
    Biophys J; 1994 Aug; 67(2):751-65. PubMed ID: 7948689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Divergent effects of ruthenium red and ryanodine on Ca2+/calmodulin-dependent phosphorylation of the Ca2+ release channel (ryanodine receptor) in cardiac sarcoplasmic reticulum.
    Netticadan T; Xu A; Narayanan N
    Arch Biochem Biophys; 1996 Sep; 333(2):368-76. PubMed ID: 8809075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NAADP induces Ca2+ oscillations via a two-pool mechanism by priming IP3- and cADPR-sensitive Ca2+ stores.
    Churchill GC; Galione A
    EMBO J; 2001 Jun; 20(11):2666-71. PubMed ID: 11387201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of intracellular calcium oscillations in porcine tracheal smooth muscle cells.
    Prakash YS; Kannan MS; Sieck GC
    Am J Physiol; 1997 Mar; 272(3 Pt 1):C966-75. PubMed ID: 9124533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms underlying angiotensin II-induced calcium oscillations.
    Edwards A; Pallone TL
    Am J Physiol Renal Physiol; 2008 Aug; 295(2):F568-84. PubMed ID: 18562632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ryanodine receptor adaptation: control mechanism of Ca(2+)-induced Ca2+ release in heart.
    Györke S; Fill M
    Science; 1993 May; 260(5109):807-9. PubMed ID: 8387229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Adaptive" behavior of ligand-gated ion channels: constraints by thermodynamics.
    Stern MD
    Biophys J; 1996 May; 70(5):2100-9. PubMed ID: 9172734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model of calcium dynamics in cardiac myocytes based on the kinetics of ryanodine-sensitive calcium channels.
    Tang Y; Othmer HG
    Biophys J; 1994 Dec; 67(6):2223-35. PubMed ID: 7696464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of Mg2+ inhibition of cardiac ryanodine receptor by palmitoyl coenzyme A.
    Connelly T; Ahern C; Sukhareva M; Coronado R
    FEBS Lett; 1994 Oct; 352(3):285-90. PubMed ID: 7925988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional calcium release channel formed by the carboxyl-terminal portion of ryanodine receptor.
    Bhat MB; Zhao J; Takeshima H; Ma J
    Biophys J; 1997 Sep; 73(3):1329-36. PubMed ID: 9284301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the roles of Ca2+ diffusion, Ca2+ buffers, and the endoplasmic reticulum in IP3-induced Ca2+ waves.
    Jafri MS; Keizer J
    Biophys J; 1995 Nov; 69(5):2139-53. PubMed ID: 8580358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voltage-independent calcium channels mediate slow oscillations of cytosolic calcium that are glucose dependent in pancreatic beta-cells.
    Leech CA; Holz GG; Habener JF
    Endocrinology; 1994 Jul; 135(1):365-72. PubMed ID: 8013370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid adaptation of cardiac ryanodine receptors: modulation by Mg2+ and phosphorylation.
    Valdivia HH; Kaplan JH; Ellis-Davies GC; Lederer WJ
    Science; 1995 Mar; 267(5206):1997-2000. PubMed ID: 7701323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.