These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 8968829)
1. Chaos control by electric current in an enzymatic reaction. Lekebusch A; Förster A; Schneider FW Int J Neural Syst; 1996 Sep; 7(4):393-7. PubMed ID: 8968829 [TBL] [Abstract][Full Text] [Related]
2. Attractor switching by neural control of chaotic neurodynamics. Pasemann F; Stollenwerk N Network; 1998 Nov; 9(4):549-61. PubMed ID: 10221579 [TBL] [Abstract][Full Text] [Related]
3. Control of chaotic spatiotemporal spiking by time-delay autosynchronization. Franceschini G; Bose S; Schöll E Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt A):5426-34. PubMed ID: 11970414 [TBL] [Abstract][Full Text] [Related]
4. Feedback loops for Shil'nikov chaos: The peroxidase-oxidase reaction. Sensse A; Hauser MJ; Eiswirth M J Chem Phys; 2006 Jul; 125(1):014901. PubMed ID: 16863327 [TBL] [Abstract][Full Text] [Related]
5. Delayed feedback control of chaos. Pyragas K Philos Trans A Math Phys Eng Sci; 2006 Sep; 364(1846):2309-34. PubMed ID: 16893790 [TBL] [Abstract][Full Text] [Related]
6. Locating unstable periodic orbits: when adaptation integrates into delayed feedback control. Lin W; Ma H; Feng J; Chen G Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046214. PubMed ID: 21230372 [TBL] [Abstract][Full Text] [Related]
7. Stochastic Resonance and time advance coding in chemical reactions. Förster A; Guderian A; Zeyer KP; Dechert G; Schneider FW Int J Neural Syst; 1996 Sep; 7(4):385-91. PubMed ID: 8968828 [TBL] [Abstract][Full Text] [Related]
8. Detecting and controlling unstable periodic orbits that are not part of a chaotic attractor. Perc M; Marhl M Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016204. PubMed ID: 15324149 [TBL] [Abstract][Full Text] [Related]
9. Reconstruction of chaotic saddles by classification of unstable periodic orbits: Kuramoto-Sivashinsky equation. Saiki Y; Yamada M; Chian AC; Miranda RA; Rempel EL Chaos; 2015 Oct; 25(10):103123. PubMed ID: 26520089 [TBL] [Abstract][Full Text] [Related]
10. Chaos in the peroxidase-oxidase oscillator. Olsen LF; Lunding A Chaos; 2021 Jan; 31(1):013119. PubMed ID: 33754781 [TBL] [Abstract][Full Text] [Related]
11. Control of Pyragas Applied to a Coupled System with Unstable Periodic Orbits. Amster P; Alliera C Bull Math Biol; 2018 Nov; 80(11):2897-2916. PubMed ID: 30203141 [TBL] [Abstract][Full Text] [Related]
12. Noise-aided control of chaotic dynamics in a logistic map. Escalona J; Parmananda P Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5B):5987-9. PubMed ID: 11031665 [TBL] [Abstract][Full Text] [Related]
13. Effect of delay mismatch in Pyragas feedback control. Purewal AS; Postlethwaite CM; Krauskopf B Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052905. PubMed ID: 25493856 [TBL] [Abstract][Full Text] [Related]
14. Adaptive tuning of feedback gain in time-delayed feedback control. Lehnert J; Hövel P; Flunkert V; Guzenko PY; Fradkov AL; Schöll E Chaos; 2011 Dec; 21(4):043111. PubMed ID: 22225348 [TBL] [Abstract][Full Text] [Related]
15. Series-nonuniform rational B-spline signal feedback: From chaos to any embedded periodic orbit or target point. Shao C; Xue Y; Fang F; Bai F; Yin P; Wang B Chaos; 2015 Jul; 25(7):073105. PubMed ID: 26232956 [TBL] [Abstract][Full Text] [Related]
16. Construction of an associative memory using unstable periodic orbits of a chaotic attractor. Wagner C; Stucki JW J Theor Biol; 2002 Apr; 215(3):375-84. PubMed ID: 12054844 [TBL] [Abstract][Full Text] [Related]
17. Control of spatiotemporal chaos in neuronal networks. Lourenço C; Babloyantz A Int J Neural Syst; 1996 Sep; 7(4):507-17. PubMed ID: 8968842 [TBL] [Abstract][Full Text] [Related]
18. Tracking unstable steady states and periodic orbits of oscillatory and chaotic electrochemical systems using delayed feedback control. Kiss IZ; Kazsu Z; Gáspár V Chaos; 2006 Sep; 16(3):033109. PubMed ID: 17014214 [TBL] [Abstract][Full Text] [Related]
19. Control of chaos: methods and applications in mechanics. Fradkov AL; Evans RJ; Andrievsky BR Philos Trans A Math Phys Eng Sci; 2006 Sep; 364(1846):2279-307. PubMed ID: 16893789 [TBL] [Abstract][Full Text] [Related]
20. Control of chaos in nonlinear systems with time-periodic coefficients. Sinha SC; Dávid A Philos Trans A Math Phys Eng Sci; 2006 Sep; 364(1846):2417-32. PubMed ID: 16893795 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]