BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 8968840)

  • 1. Reafference and attractors in the olfactory system during odor recognition.
    Kay LM; Lancaster LR; Freeman WJ
    Int J Neural Syst; 1996 Sep; 7(4):489-95. PubMed ID: 8968840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bidirectional processing in the olfactory-limbic axis during olfactory behavior.
    Kay LM; Freeman WJ
    Behav Neurosci; 1998 Jun; 112(3):541-53. PubMed ID: 9676972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A beta oscillation network in the rat olfactory system during a 2-alternative choice odor discrimination task.
    Kay LM; Beshel J
    J Neurophysiol; 2010 Aug; 104(2):829-39. PubMed ID: 20538778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulations of EEG activity in the entorhinal cortex and forebrain olfactory areas during odour sampling.
    Boeijinga PH; Lopes da Silva FH
    Brain Res; 1989 Jan; 478(2):257-68. PubMed ID: 2924130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Odor increases [3H]phorbol dibutyrate binding to protein kinase C in olfactory structures of rat brain. Effect of entorhinal cortex lesion.
    Faillace MP; Zwiller J; Di Scala G; Bernabeu R
    Brain Res; 2006 Jan; 1068(1):16-22. PubMed ID: 16386712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An olfacto-hippocampal network is dynamically involved in odor-discrimination learning.
    Martin C; Beshel J; Kay LM
    J Neurophysiol; 2007 Oct; 98(4):2196-205. PubMed ID: 17699692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Odor- and state-dependent olfactory tubercle local field potential dynamics in awake rats.
    Carlson KS; Dillione MR; Wesson DW
    J Neurophysiol; 2014 May; 111(10):2109-23. PubMed ID: 24598519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Odor regulates the expression of the mitogen-activated protein kinase phosphatase gene hVH-5 in bilateral entorhinal cortex-lesioned rats.
    Bernabeu R; Di Scala G; Zwiller J
    Brain Res Mol Brain Res; 2000 Jan; 75(1):113-20. PubMed ID: 10648894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directional coupling from the olfactory bulb to the hippocampus during a go/no-go odor discrimination task.
    Gourévitch B; Kay LM; Martin C
    J Neurophysiol; 2010 May; 103(5):2633-41. PubMed ID: 20164392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Odor-induced fast waves in the dentate gyrus depend on a pathway through posterior cerebral cortex: effects of limbic lesions and trimethyltin.
    Heale VR; Vanderwolf CH
    Brain Res Bull; 1999 Nov; 50(4):291-9. PubMed ID: 10582527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polysynaptic olfactory pathway to the ipsi- and contralateral entorhinal cortex mediated via the hippocampus.
    Uva L; de Curtis M
    Neuroscience; 2005; 130(1):249-58. PubMed ID: 15561441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal analysis of prepyriform, visual, auditory, and somesthetic surface EEGs in trained rabbits.
    Barrie JM; Freeman WJ; Lenhart MD
    J Neurophysiol; 1996 Jul; 76(1):520-39. PubMed ID: 8836241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gamma and Beta Oscillations Define a Sequence of Neurocognitive Modes Present in Odor Processing.
    Frederick DE; Brown A; Brim E; Mehta N; Vujovic M; Kay LM
    J Neurosci; 2016 Jul; 36(29):7750-67. PubMed ID: 27445151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early integrative processes physiologically observed in dentate gyrus during an olfactory associative training in rat.
    Truchet B; Chaillan FA; Soumireu-Mourat B; Roman FS
    J Integr Neurosci; 2002 Jun; 1(1):101-15. PubMed ID: 15011266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theta oscillations and sensorimotor performance.
    Kay LM
    Proc Natl Acad Sci U S A; 2005 Mar; 102(10):3863-8. PubMed ID: 15738424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong coupling between pyramidal cell activity and network oscillations in the olfactory cortex.
    Litaudon P; Garcia S; Buonviso N
    Neuroscience; 2008 Oct; 156(3):781-7. PubMed ID: 18790020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The neurotoxins colchicine and kainic acid block odor-induced fast waves and olfactory-evoked potentials in the dentate gyrus of the behaving rat.
    Heale VR; Vanderwolf CH; Leung LS
    Brain Res; 1995 Sep; 690(2):157-66. PubMed ID: 8535832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Olfactory bulb gamma oscillations are enhanced with task demands.
    Beshel J; Kopell N; Kay LM
    J Neurosci; 2007 Aug; 27(31):8358-65. PubMed ID: 17670982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Odor-evoked activity is spatially distributed in piriform cortex.
    Illig KR; Haberly LB
    J Comp Neurol; 2003 Mar; 457(4):361-73. PubMed ID: 12561076
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.