BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 8969188)

  • 61. Mutagenesis of acidic residues in the oxygenase domain of inducible nitric-oxide synthase identifies a glutamate involved in arginine binding.
    Gachhui R; Ghosh DK; Wu C; Parkinson J; Crane BR; Stuehr DJ
    Biochemistry; 1997 Apr; 36(17):5097-103. PubMed ID: 9136868
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Replacement of the axial histidine ligand with imidazole in cytochrome c peroxidase. 1. Effects on structure.
    Hirst J; Wilcox SK; Williams PA; Blankenship J; McRee DE; Goodin DB
    Biochemistry; 2001 Feb; 40(5):1265-73. PubMed ID: 11170452
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Comparison of wild type neuronal nitric oxide synthase and its Tyr588Phe mutant towards various L-arginine analogues.
    Giroud C; Moreau M; Sagami I; Shimizu T; Frapart Y; Mansuy D; Boucher JL
    J Inorg Biochem; 2010 Oct; 104(10):1043-50. PubMed ID: 20630600
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Stopped-flow analysis of CO and NO binding to inducible nitric oxide synthase.
    Abu-Soud HM; Wu C; Ghosh DK; Stuehr DJ
    Biochemistry; 1998 Mar; 37(11):3777-86. PubMed ID: 9521697
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Structural basis for ligand discrimination and response initiation in the heme-based oxygen sensor FixL.
    Rodgers KR; Lukat-Rodgers GS; Barron JA
    Biochemistry; 1996 Jul; 35(29):9539-48. PubMed ID: 8755735
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Ligand and halide binding properties of chloroperoxidase: peroxidase-type active site heme environment with cytochrome P-450 type endogenous axial ligand and spectroscopic properties.
    Sono M; Dawson JH; Hall K; Hager LP
    Biochemistry; 1986 Jan; 25(2):347-56. PubMed ID: 3955002
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Structural and kinetic studies of imidazole binding to two members of the cytochrome c (6) family reveal an important role for a conserved heme pocket residue.
    Rajagopal BS; Wilson MT; Bendall DS; Howe CJ; Worrall JA
    J Biol Inorg Chem; 2011 Apr; 16(4):577-88. PubMed ID: 21267610
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Evidence for the pathophysiological role of endogenous methylarginines in regulation of endothelial NO production and vascular function.
    Cardounel AJ; Cui H; Samouilov A; Johnson W; Kearns P; Tsai AL; Berka V; Zweier JL
    J Biol Chem; 2007 Jan; 282(2):879-87. PubMed ID: 17082183
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Synthesis and evaluation of new sulfur-containing L-arginine-derived inhibitors of nitric oxide synthase.
    Ichimori K; Stuehr DJ; Atkinson RN; King SB
    J Med Chem; 1999 May; 42(10):1842-8. PubMed ID: 10346937
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Oxidation of NG-hydroxy-L-arginine by nitric oxide synthase: evidence for the involvement of the heme in catalysis.
    Pufahl RA; Marletta MA
    Biochem Biophys Res Commun; 1993 Jun; 193(3):963-70. PubMed ID: 7686757
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Subunit interactions of endothelial nitric-oxide synthase. Comparisons to the neuronal and inducible nitric-oxide synthase isoforms.
    Venema RC; Ju H; Zou R; Ryan JW; Venema VJ
    J Biol Chem; 1997 Jan; 272(2):1276-82. PubMed ID: 8995432
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Superoxide generation from endothelial nitric-oxide synthase. A Ca2+/calmodulin-dependent and tetrahydrobiopterin regulatory process.
    Xia Y; Tsai AL; Berka V; Zweier JL
    J Biol Chem; 1998 Oct; 273(40):25804-8. PubMed ID: 9748253
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Structure and activity of NO synthase inhibitors specific to the L-arginine binding site.
    Proskuryakov SY; Konoplyannikov AG; Skvortsov VG; Mandrugin AA; Fedoseev VM
    Biochemistry (Mosc); 2005 Jan; 70(1):8-23. PubMed ID: 15701046
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Nitrosyl-heme structures of Bacillus subtilis nitric oxide synthase have implications for understanding substrate oxidation.
    Pant K; Crane BR
    Biochemistry; 2006 Feb; 45(8):2537-44. PubMed ID: 16489746
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Structure and reactivity of a thermostable prokaryotic nitric-oxide synthase that forms a long-lived oxy-heme complex.
    Sudhamsu J; Crane BR
    J Biol Chem; 2006 Apr; 281(14):9623-32. PubMed ID: 16407211
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Interrelation between nitric oxide synthase and heme oxygenase in rat endothelial cells.
    Seki T; Naruse M; Naruse K; Yoshimoto T; Tanabe A; Imaki T; Hagiwara H; Hirose S; Demura H
    Eur J Pharmacol; 1997 Jul; 331(1):87-91. PubMed ID: 9274934
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Dynamics of NO rebinding to the heme domain of NO synthase-like proteins from bacterial pathogens.
    Gautier C; Mikula I; Nioche P; Martasek P; Raman CS; Slama-Schwok A
    Nitric Oxide; 2006 Dec; 15(4):312-27. PubMed ID: 16690332
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Imidazole-containing amino acids as selective inhibitors of nitric oxide synthases.
    Lee Y; Martasek P; Roman LJ; Masters BS; Silverman RB
    Bioorg Med Chem; 1999 Sep; 7(9):1941-51. PubMed ID: 10530943
    [TBL] [Abstract][Full Text] [Related]  

  • 79. NO synthase isozymes have distinct substrate binding sites.
    Fan B; Wang J; Stuehr DJ; Rousseau DL
    Biochemistry; 1997 Oct; 36(42):12660-5. PubMed ID: 9376373
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The inhibitory potency and selectivity of arginine substrate site nitric-oxide synthase inhibitors is solely determined by their affinity toward the different isoenzymes.
    Boer R; Ulrich WR; Klein T; Mirau B; Haas S; Baur I
    Mol Pharmacol; 2000 Nov; 58(5):1026-34. PubMed ID: 11040050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.