These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 8969210)
1. Sugar transport by the marine chitinolytic bacterium Vibrio furnissii. Molecular cloning and analysis of the mannose/glucose permease. Bouma CL; Roseman S J Biol Chem; 1996 Dec; 271(52):33468-75. PubMed ID: 8969210 [TBL] [Abstract][Full Text] [Related]
2. Sugar transport by the marine chitinolytic bacterium Vibrio furnissii. Molecular cloning and analysis of the glucose and N-acetylglucosamine permeases. Bouma CL; Roseman S J Biol Chem; 1996 Dec; 271(52):33457-67. PubMed ID: 8969209 [TBL] [Abstract][Full Text] [Related]
3. The mannose-permease of the bacterial phosphotransferase system. Gene cloning and purification of the enzyme IIMan/IIIMan complex of Escherichia coli. Erni B; Zanolari B J Biol Chem; 1985 Dec; 260(29):15495-503. PubMed ID: 2999119 [TBL] [Abstract][Full Text] [Related]
4. Horizontal transfer of chromosomal DNA between the marine bacterium Vibrio furnissii and Escherichia coli revealed by sequence analysis. Charbit A; Autret N Microb Comp Genomics; 1998; 3(2):119-32. PubMed ID: 9697096 [TBL] [Abstract][Full Text] [Related]
5. Chitin catabolism in the marine bacterium Vibrio furnissii. Identification and molecular cloning of a chitoporin. Keyhani NO; Li XB; Roseman S J Biol Chem; 2000 Oct; 275(42):33068-76. PubMed ID: 10913115 [TBL] [Abstract][Full Text] [Related]
6. Chitin utilization by marine bacteria. Degradation and catabolism of chitin oligosaccharides by Vibrio furnissii. Bassler BL; Yu C; Lee YC; Roseman S J Biol Chem; 1991 Dec; 266(36):24276-86. PubMed ID: 1761533 [TBL] [Abstract][Full Text] [Related]
7. Chitin utilization by marine bacteria. Chemotaxis to chitin oligosaccharides by Vibrio furnissii. Bassler BL; Gibbons PJ; Yu C; Roseman S J Biol Chem; 1991 Dec; 266(36):24268-75. PubMed ID: 1761532 [TBL] [Abstract][Full Text] [Related]
8. The chitin catabolic cascade in the marine bacterium Vibrio furnissii. Molecular cloning, isolation, and characterization of a periplasmic beta-N-acetylglucosaminidase. Keyhani NO; Roseman S J Biol Chem; 1996 Dec; 271(52):33425-32. PubMed ID: 8969205 [TBL] [Abstract][Full Text] [Related]
9. Molecular cloning and characterization of a novel beta-N-acetyl-D-glucosaminidase from Vibrio furnissii. Chitlaru E; Roseman S J Biol Chem; 1996 Dec; 271(52):33433-9. PubMed ID: 8969206 [TBL] [Abstract][Full Text] [Related]
10. Sugar transport by the bacterial phosphotransferase system. The glucose receptors of the Salmonella typhimurium phosphotransferase system. Stock JB; Waygood EB; Meadow ND; Postma PW; Roseman S J Biol Chem; 1982 Dec; 257(23):14543-52. PubMed ID: 6292227 [TBL] [Abstract][Full Text] [Related]
11. Pel, the protein that permits lambda DNA penetration of Escherichia coli, is encoded by a gene in ptsM and is required for mannose utilization by the phosphotransferase system. Williams N; Fox DK; Shea C; Roseman S Proc Natl Acad Sci U S A; 1986 Dec; 83(23):8934-8. PubMed ID: 2947241 [TBL] [Abstract][Full Text] [Related]
12. The chitin catabolic cascade in the marine bacterium Vibrio furnissii. Molecular cloning, isolation, and characterization of a periplasmic chitodextrinase. Keyhani NO; Roseman S J Biol Chem; 1996 Dec; 271(52):33414-24. PubMed ID: 8969204 [TBL] [Abstract][Full Text] [Related]
13. The chitin disaccharide, N,N'-diacetylchitobiose, is catabolized by Escherichia coli and is transported/phosphorylated by the phosphoenolpyruvate:glycose phosphotransferase system. Keyhani NO; Wang LX; Lee YC; Roseman S J Biol Chem; 2000 Oct; 275(42):33084-90. PubMed ID: 10913117 [TBL] [Abstract][Full Text] [Related]
14. Chemotaxis of the marine bacterium Vibrio furnissii to sugars. A potential mechanism for initiating the chitin catabolic cascade. Yu C; Bassler BL; Roseman S J Biol Chem; 1993 May; 268(13):9405-9. PubMed ID: 8486635 [TBL] [Abstract][Full Text] [Related]
15. Chitin catabolism in the marine bacterium Vibrio furnissii. Identification, molecular cloning, and characterization of A N, N'-diacetylchitobiose phosphorylase. Park JK; Keyhani NO; Roseman S J Biol Chem; 2000 Oct; 275(42):33077-83. PubMed ID: 10913116 [TBL] [Abstract][Full Text] [Related]
16. Glucose-permease of the bacterial phosphotransferase system. Gene cloning, overproduction, and amino acid sequence of enzyme IIGlc. Erni B; Zanolari B J Biol Chem; 1986 Dec; 261(35):16398-403. PubMed ID: 3023349 [TBL] [Abstract][Full Text] [Related]
17. Lactobacillus curvatus has a glucose transport system homologous to the mannose family of phosphoenolpyruvate-dependent phosphotransferase systems. Veyrat A; Gosalbes MJ; Pérez-Martínez G Microbiology (Reading); 1996 Dec; 142 ( Pt 12)():3469-77. PubMed ID: 9004509 [TBL] [Abstract][Full Text] [Related]
18. Cloning and sequencing of two genes from Staphylococcus carnosus coding for glucose-specific PTS and their expression in Escherichia coli K-12. Christiansen I; Hengstenberg W Mol Gen Genet; 1996 Feb; 250(3):375-9. PubMed ID: 8602153 [TBL] [Abstract][Full Text] [Related]
20. Unique dicistronic operon (ptsI-crr) in Mycoplasma capricolum encoding enzyme I and the glucose-specific enzyme IIA of the phosphoenolpyruvate:sugar phosphotransferase system: cloning, sequencing, promoter analysis, and protein characterization. Zhu PP; Reizer J; Peterkofsky A Protein Sci; 1994 Nov; 3(11):2115-28. PubMed ID: 7703858 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]