These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 8969475)

  • 1. Characterizing cochlear mechano-electric transduction using a nonlinear systems identification procedure.
    Chertoff ME; Steele T; Ator GA; Bian L
    J Acoust Soc Am; 1996 Dec; 100(6):3741-53. PubMed ID: 8969475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing cochlear mechano-electric transduction in ears damaged with pure tones.
    Chertoff ME; Steele TC; Bian L
    J Acoust Soc Am; 1997 Jul; 102(1):441-50. PubMed ID: 9228806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing cochlear mechano-electric transduction with a nonlinear system identification technique: the influence of the middle ear.
    Choi CH; Chertoff ME; Yi X
    J Acoust Soc Am; 2002 Dec; 112(6):2898-909. PubMed ID: 12509011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiation of cochlear pathophysiology in ears damaged by salicylate or a pure tone using a nonlinear systems identification technique.
    Bian L; Chertoff ME
    J Acoust Soc Am; 1998 Oct; 104(4):2261-71. PubMed ID: 10491690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into linear and nonlinear cochlear transduction: application of a new system-identification procedure on transient-evoked otoacoustic emissions data.
    Krishnan G; Chertoff ME
    J Acoust Soc Am; 1999 Feb; 105(2 Pt 1):770-81. PubMed ID: 9972563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of hearing sensitivity on mechano-electric transduction.
    Chertoff ME; Yi X; Lichtenhan JT
    J Acoust Soc Am; 2003 Dec; 114(6 Pt 1):3251-63. PubMed ID: 14714806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinguishing cochlear pathophysiology in 4-aminopyridine and furosemide treated ears using a nonlinear systems identification technique.
    Bian L; Chertoff ME
    J Acoust Soc Am; 2001 Feb; 109(2):671-85. PubMed ID: 11248972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency responses of two- and three-tone distortion product otoacoustic emissions in Mongolian gerbils.
    Mills DM
    J Acoust Soc Am; 2000 May; 107(5 Pt 1):2586-602. PubMed ID: 10830382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corticofugal Modulation of DPOAEs in Gerbils.
    Jäger K; Kössl M
    Hear Res; 2016 Feb; 332():61-72. PubMed ID: 26619750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deriving a cochlear transducer function from low-frequency modulation of distortion product otoacoustic emissions.
    Bian L; Chertoff ME; Miller E
    J Acoust Soc Am; 2002 Jul; 112(1):198-210. PubMed ID: 12141345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of contralateral pure tone stimulation on distortion emissions suggests a frequency-specific functioning of the efferent cochlear control.
    Althen H; Wittekindt A; Gaese B; Kössl M; Abel C
    J Neurophysiol; 2012 Apr; 107(7):1962-9. PubMed ID: 22262828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origin of cubic difference tones generated by high-intensity stimuli: effect of ischemia and auditory fatigue on the gerbil cochlea.
    Mom T; Bonfils P; Gilain L; Avan P
    J Acoust Soc Am; 2001 Sep; 110(3 Pt 1):1477-88. PubMed ID: 11572358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-frequency bias tone suppression of auditory-nerve responses to low-level clicks and tones.
    Nam H; Guinan JJ
    Hear Res; 2016 Nov; 341():66-78. PubMed ID: 27550413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The envelope following response (EFR) in the Mongolian gerbil to sinusoidally amplitude-modulated signals in the presence of simultaneously gated pure tones.
    Dolphin WF; Mountain DC
    J Acoust Soc Am; 1993 Dec; 94(6):3215-26. PubMed ID: 8300956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Representation of acoustic signals in the human cochlea in presence of a cochlear implant electrode.
    Kiefer J; Böhnke F; Adunka O; Arnold W
    Hear Res; 2006 Nov; 221(1-2):36-43. PubMed ID: 16962268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-suppression in a locally active nonlinear model of the cochlea: a quasilinear approach.
    Kanis LJ; de Boer E
    J Acoust Soc Am; 1993 Dec; 94(6):3199-206. PubMed ID: 8300954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical responses to two-tone distortion products in the apical and basal turns of the mammalian cochlea.
    Cooper NP; Rhode WS
    J Neurophysiol; 1997 Jul; 78(1):261-70. PubMed ID: 9242278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinearity in eardrum vibration as a function of frequency and sound pressure.
    Aerts JR; Dirckx JJ
    Hear Res; 2010 May; 263(1-2):26-32. PubMed ID: 20026266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distortion-product otoacoustic emissions in Mongolian gerbils with resistance to noise-induced hearing loss.
    Boettcher FA; Schmiedt RA
    J Acoust Soc Am; 1995 Dec; 98(6):3215-22. PubMed ID: 8550946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cochlear nonlinear transmission-line model compatible with combination tone psychophysics.
    Furst M; Goldstein JL
    J Acoust Soc Am; 1982 Sep; 72(3):717-26. PubMed ID: 7130530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.