These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 8970103)

  • 41. Minimization of diffusive attenuation in T2-weighted NMR images of porous solids using turboSPI.
    Beyea SD; Bremner TW; Balcom BJ
    Solid State Nucl Magn Reson; 2006 Jun; 29(4):267-71. PubMed ID: 16226019
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multiexponential T2-relaxation analysis in cerebrally damaged rats in the absence and presence of a gadolinium contrast agent.
    Lascialfari A; Zucca I; Asdente M; Cimino M; Guerrini U; Paoletti R; Tremoli E; Lorusso V; Sironi L
    Magn Reson Med; 2005 Jun; 53(6):1326-32. PubMed ID: 15906297
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ultra-low field NMR measurements of liquids and gases with short relaxation times.
    Volegov PL; Matlachov AN; Kraus RH
    J Magn Reson; 2006 Nov; 183(1):134-41. PubMed ID: 16945561
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inverting MRI measurements to heterogeneity spectra.
    Pomerantz AE; Tilke P; Song YQ
    J Magn Reson; 2008 Aug; 193(2):243-50. PubMed ID: 18550400
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Determination of surface relaxivity from NMR diffusion measurements.
    Slijkerman WF; Hofman JP
    Magn Reson Imaging; 1998; 16(5-6):541-4. PubMed ID: 9803905
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Two-dimensional nuclear magnetic resonance petrophysics.
    Sun B; Dunn KJ
    Magn Reson Imaging; 2005 Feb; 23(2):259-62. PubMed ID: 15833623
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Separation of collagen-bound and porous bone-water longitudinal relaxation in mice using a segmented inversion recovery zero-echo-time sequence.
    Marcon M; Keller D; Wurnig MC; Weiger M; Kenkel D; Eberhardt C; Eberli D; Boss A
    Magn Reson Med; 2017 May; 77(5):1909-1915. PubMed ID: 27221236
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Measuring water content using T2 relaxation at 3T: Phantom validations and simulations.
    Meyers SM; Kolind SH; Laule C; MacKay AL
    Magn Reson Imaging; 2016 Apr; 34(3):246-51. PubMed ID: 26657977
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stray field nuclear magnetic resonance of soil water: development of a new, large probe and preliminary results.
    Kinchesh P; Samoilenko AA; Preston AR; Randall EW
    J Environ Qual; 2002; 31(2):494-9. PubMed ID: 11931439
    [TBL] [Abstract][Full Text] [Related]  

  • 50. AnalyzeNNLS: magnetic resonance multiexponential decay image analysis.
    Bjarnason TA; Mitchell JR
    J Magn Reson; 2010 Oct; 206(2):200-4. PubMed ID: 20688549
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Analysis of multi-exponential relaxation data with very short components using linear regularization.
    Moody JB; Xia Y
    J Magn Reson; 2004 Mar; 167(1):36-41. PubMed ID: 14987596
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The computation of MR image distortions caused by tissue susceptibility using the boundary element method.
    de Munck JC; Bhagwandien R; Muller SH; Verster FC; Van Herk MB
    IEEE Trans Med Imaging; 1996; 15(5):620-7. PubMed ID: 18215943
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pore size distributions, pore coupling, and transverse relaxation spectra of porous rocks.
    Kleinberg RL
    Magn Reson Imaging; 1994; 12(2):271-4. PubMed ID: 8170317
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In vivo estimation of relaxation processes in benign hyperplasia and carcinoma of the prostate gland by magnetic resonance imaging.
    Kjaer L; Thomsen C; Iversen P; Henriksen O
    Magn Reson Imaging; 1987; 5(1):23-30. PubMed ID: 2438532
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A comparison among different inversion methods for multi-exponential NMR relaxation data.
    Borgia GC; Bortolotti V; Brown RJ; Castaldi P; Fantazzini P; Soverini U
    Magn Reson Imaging; 1994; 12(2):209-12. PubMed ID: 8170301
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Model for the interpretation of nuclear magnetic resonance relaxometry of hydrated porous silicate materials.
    Faux DA; Cachia SH; McDonald PJ; Bhatt JS; Howlett NC; Churakov SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032311. PubMed ID: 25871114
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Longitudinal NMR parameter measurements of Japanese pear fruit during the growing process using a mobile magnetic resonance imaging system.
    Geya Y; Kimura T; Fujisaki H; Terada Y; Kose K; Haishi T; Gemma H; Sekozawa Y
    J Magn Reson; 2013 Jan; 226():45-51. PubMed ID: 23211549
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Understanding generalized inversions of nuclear magnetic resonance transverse relaxation time in porous media.
    Mitchell J; Chandrasekera TC
    J Chem Phys; 2014 Dec; 141(22):224201. PubMed ID: 25494741
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Strategies and tactics in NMR imaging relaxation time measurements. I. Minimizing relaxation time errors due to image noise--the ideal case.
    Kurland RJ
    Magn Reson Med; 1985 Apr; 2(2):136-58. PubMed ID: 3831683
    [TBL] [Abstract][Full Text] [Related]  

  • 60. PERFIDI: parametrically enabled relaxation filters with double and multiple inversion.
    Sykora S; Bortollotti V; Fantazzini P
    Magn Reson Imaging; 2007 May; 25(4):529-32. PubMed ID: 17466780
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.