BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 8970119)

  • 1. Application of NMR imaging to steam foam flooding in porous media.
    Quan C; Weimin W; Xianchun C
    Magn Reson Imaging; 1996; 14(7-8):949-50. PubMed ID: 8970119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of Nanoclay-Surfactant-Stabilized Foam for Improving Oil Recovery of Steam Flooding in Offshore Heavy Oil Reservoirs.
    Zheng W; Tan X; Jiang W; Xie H; Pei H
    ACS Omega; 2021 Sep; 6(35):22709-22716. PubMed ID: 34514242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of oil removal in surfactant alternating gas with water alternating gas, water flooding and gas flooding in secondary oil recovery process.
    Salehi MM; Safarzadeh MA; Sahraei E; Nejad SA
    J Pet Sci Eng; 2014 Aug; 120():86-93. PubMed ID: 26594096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The application of NMR imaging to the studies of enhanced oil recovery in China.
    Weimin W; Dongjiang L; Wei L
    Magn Reson Imaging; 1996; 14(7-8):951-3. PubMed ID: 8970120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental Study on Enhanced Oil Recovery Effect of Profile Control System-Assisted Steam Flooding.
    Dong L; Zhao F; Zhang H; Liu Y; Huang Q; Liu D; Guo S; Meng F
    Polymers (Basel); 2023 Nov; 15(23):. PubMed ID: 38231899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A micromodel analysis of factors influencing NAPL removal by surfactant foam flooding.
    Jeong SW; Corapcioglu MY
    J Contam Hydrol; 2003 Jan; 60(1-2):77-96. PubMed ID: 12498575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Flue Gas Foam-Assisted Steam Flooding in Complex and Difficult-to-Produce Heavy Oil Reservoirs.
    Min W; Zhang L
    ACS Omega; 2024 Mar; 9(10):11574-11588. PubMed ID: 38496954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative evaluation of porous media wettability using NMR relaxometry.
    Fleury M; Deflandre F
    Magn Reson Imaging; 2003; 21(3-4):385-7. PubMed ID: 12850740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2D sandbox experiments of surfactant foams for mobility control and enhanced LNAPL recovery in layered soils.
    Longpré-Girard M; Martel R; Robert T; Lefebvre R; Lauzon JM
    J Contam Hydrol; 2016 Oct; 193():63-73. PubMed ID: 27639103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Foam stability of temperature-resistant hydrophobic silica particles in porous media.
    Qiao S; Yu H; Wang Y; Zhan L; Liu Q; Fan Z; Sun A
    Front Chem; 2022; 10():960067. PubMed ID: 36118316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic resonance imaging study of complex fluid flow in porous media: flow patterns and quantitative saturation profiling of amphiphilic fracturing fluid displacement in sandstone cores.
    Sheppard S; Mantle MD; Sederman AJ; Johns ML; Gladden LF
    Magn Reson Imaging; 2003; 21(3-4):365-7. PubMed ID: 12850735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental Investigation of Foam Flooding Using Anionic and Nonionic Surfactants: A Screening Scenario to Assess the Effects of Salinity and pH on Foam Stability and Foam Height.
    Emami H; Ayatizadeh Tanha A; Khaksar Manshad A; Mohammadi AH
    ACS Omega; 2022 May; 7(17):14832-14847. PubMed ID: 35557679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of Chemical-Foam Design as a Novel Approach toward Immiscible Foam Flooding for Enhanced Oil Recovery.
    Hosseini-Nasab SM; Zitha PLJ
    Energy Fuels; 2017 Oct; 31(10):10525-10534. PubMed ID: 29093612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of foam-like emulsion phases in porous media flow.
    Kharrat A; Brandstätter B; Borji M; Ritter R; Arnold P; Fritz-Popovski G; Paris O; Ott H
    J Colloid Interface Sci; 2022 Feb; 608(Pt 1):1064-1073. PubMed ID: 34785454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical study of the mechanisms of nano-assisted foam flooding in porous media as an alternative to gas flooding.
    Bello A; Dorhjie DB; Ivanova A; Cheremisin A; Ilyasov I; Cheremisin A
    Heliyon; 2024 Mar; 10(5):e26689. PubMed ID: 38434408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic resonance for fluids in porous media at the University of Bologna.
    Fantazzini P
    Magn Reson Imaging; 2005 Feb; 23(2):125-31. PubMed ID: 15833602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laboratory Testing in Support of Surfactant-Alternating-Gas Foam Flood for NAPL Recovery from Shallow Subsurface.
    Stylianou M; Lee JH; Kostarelos K; Voskaridou T
    Bull Environ Contam Toxicol; 2018 Dec; 101(6):744-750. PubMed ID: 30255234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic Behaviors and Mechanisms of Air-Foam Flooding at High Pressure and Reservoir Temperature via Microfluidic Experiments.
    Li D; Xin G; Ren S
    ACS Omega; 2022 Oct; 7(41):36503-36509. PubMed ID: 36278066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fundamental investigation of foam flow in a liquid-filled Hele-Shaw cell.
    Osei-Bonsu K; Shokri N; Grassia P
    J Colloid Interface Sci; 2016 Jan; 462():288-96. PubMed ID: 26473278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of foam assisted water-alternating-gas flooding and quantification of resistivity and water saturation by experiment and simulation to determine foam propagation in sandstone.
    Khan JA; Kim J; Irawan S; Permatasar KA; Verdin PG; Cai B; Yekeen N
    Heliyon; 2024 Feb; 10(3):e25435. PubMed ID: 38333865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.