These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 8970874)
41. Dissociation of gadolinium chelates in mice: relationship to chemical characteristics. Wedeking P; Kumar K; Tweedle MF Magn Reson Imaging; 1992; 10(4):641-8. PubMed ID: 1501535 [TBL] [Abstract][Full Text] [Related]
42. Lanthanide chelates of (bis)-hydroxymethyl-substituted DTTA with potential application as contrast agents in magnetic resonance imaging. Silvério S; Torres S; Martins AF; Martins JA; André JP; Helm L; Prata MI; Santos AC; Geraldes CF Dalton Trans; 2009 Jun; (24):4656-70. PubMed ID: 19513474 [TBL] [Abstract][Full Text] [Related]
43. Gadolinium Retention, Brain T1 Hyperintensity, and Endogenous Metals: A Comparative Study of Macrocyclic Versus Linear Gadolinium Chelates in Renally Sensitized Rats. Rasschaert M; Emerit A; Fretellier N; Factor C; Robert P; Idée JM; Corot C Invest Radiol; 2018 Jun; 53(6):328-337. PubMed ID: 29329151 [TBL] [Abstract][Full Text] [Related]
44. Intraindividual in vivo comparison of gadolinium contrast agents for pharmacokinetic analysis using dynamic contrast enhanced magnetic resonance imaging. Liang J; Sammet S; Yang X; Jia G; Takayama Y; Knopp MV Invest Radiol; 2010 May; 45(5):233-44. PubMed ID: 20351653 [TBL] [Abstract][Full Text] [Related]
45. Distribution and clearance of retained gadolinium in the brain: differences between linear and macrocyclic gadolinium based contrast agents in a mouse model. Kartamihardja AA; Nakajima T; Kameo S; Koyama H; Tsushima Y Br J Radiol; 2016 Oct; 89(1066):20160509. PubMed ID: 27459250 [TBL] [Abstract][Full Text] [Related]
46. Comparative study of the physicochemical properties of six clinical low molecular weight gadolinium contrast agents. Laurent S; Elst LV; Muller RN Contrast Media Mol Imaging; 2006; 1(3):128-37. PubMed ID: 17193689 [TBL] [Abstract][Full Text] [Related]
47. Tissue gadolinium deposition in renally impaired rats exposed to different gadolinium-based MRI contrast agents: evaluation with inductively coupled plasma mass spectrometry (ICP-MS). Sato T; Ito K; Tamada T; Kanki A; Watanabe S; Nishimura H; Tanimoto D; Higashi H; Yamamoto A Magn Reson Imaging; 2013 Oct; 31(8):1412-7. PubMed ID: 23643157 [TBL] [Abstract][Full Text] [Related]
48. In vivo imaging of extraction fraction of low molecular weight MR contrast agents and perfusion rate in rodent tumors. Kovar DA; Lewis MZ; River JN; Lipton MJ; Karczmar GS Magn Reson Med; 1997 Aug; 38(2):259-68. PubMed ID: 9256106 [TBL] [Abstract][Full Text] [Related]
49. [A comparative study between Gd-BOPTA, a biliary excretion contrast medium, and Gd-DTPA in the magnetic resonance imaging of the rat liver]. Patrizio G; Pavone P; Cardone G; Pietroletti R; Passariello R; Tettamanti E; Musu C; Felder E Radiol Med; 1990 May; 79(5):458-62. PubMed ID: 2359853 [TBL] [Abstract][Full Text] [Related]
50. Gadolinium-ethoxybenzyl-DTPA, a new liver-specific magnetic resonance contrast agent. Kinetic and enhancement patterns in normal and cholestatic rats. Clément O; Mühler A; Vexler V; Berthezène Y; Brasch RC Invest Radiol; 1992 Aug; 27(8):612-9. PubMed ID: 1428739 [TBL] [Abstract][Full Text] [Related]
51. Physicochemical properties, pharmacokinetics, and biodistribution of gadoteridol injection in rats and dogs. Eakins MN; Eaton SM; Fisco RA; Hunt RJ; Ita CE; Katona T; Owies LM; Schramm E; Sulner JW; Thompson CW Acad Radiol; 1995 Jul; 2(7):584-91. PubMed ID: 9419608 [TBL] [Abstract][Full Text] [Related]
52. Experimental trials with Gd(DO3A)--a nonionic magnetic resonance contrast agent. Runge VM; Kaufman DM; Wood ML; Adelman LS; Jacobson S Int J Rad Appl Instrum B; 1989; 16(6):561-7. PubMed ID: 2606711 [TBL] [Abstract][Full Text] [Related]
53. MR imaging of double-contrast enhanced porcine myocardial infarction. Correlation with microdialysis. Nilsson S; Wikström M; Ericsson A; Wikström G; Waldenström A; Oksendal A; Hemmingsson A Acta Radiol; 1995 Jul; 36(4):346-52. PubMed ID: 7619610 [TBL] [Abstract][Full Text] [Related]
54. Gd HP-DO3A--experimental evaluation in brain and renal MR. Runge VM; Gelblum DY; Jacobson S Magn Reson Imaging; 1991; 9(1):79-87. PubMed ID: 2056855 [TBL] [Abstract][Full Text] [Related]
56. Organ retention of gadolinium in mother and pup mice: effect of pregnancy and type of gadolinium-based contrast agents. Erdene K; Nakajima T; Kameo S; Khairinisa MA; Lamid-Ochir O; Tumenjargal A; Koibuchi N; Koyama H; Tsushima Y Jpn J Radiol; 2017 Oct; 35(10):568-573. PubMed ID: 28730467 [TBL] [Abstract][Full Text] [Related]
57. Neurotoxicity of contrast media for magnetic resonance imaging after generalized breakdown of the blood-brain barrier. Evill CA; Wilson AJ; Fletcher MC; Sage MR Acad Radiol; 1996 Aug; 3 Suppl 2():S336-8. PubMed ID: 8796597 [No Abstract] [Full Text] [Related]
58. Elimination of gadolinium-ethoxybenzyl-DTPA in a rat model of severely impaired liver and kidney excretory function. An experimental study in rats. Mühler A; Heinzelmann I; Weinmann HJ Invest Radiol; 1994 Feb; 29(2):213-6. PubMed ID: 8169100 [TBL] [Abstract][Full Text] [Related]
59. Biliary excretion and pharmacokinetics of a gadolinium chelate used as a liver-specific contrast agent for magnetic resonance imaging in the rat. Schuhmann-Giampieri G; Schmitt-Willich H; Frenzel T; Schitt-Willich H [corrected to Schmitt-Willich H] J Pharm Sci; 1993 Aug; 82(8):799-803. PubMed ID: 8377117 [TBL] [Abstract][Full Text] [Related]