BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 8970988)

  • 21. Specificity of human immunodeficiency virus-1 reverse transcriptase-associated ribonuclease H in removal of the minus-strand primer, tRNA(Lys3).
    Smith JS; Roth MJ
    J Biol Chem; 1992 Jul; 267(21):15071-9. PubMed ID: 1378844
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RNase H activity: structure, specificity, and function in reverse transcription.
    Schultz SJ; Champoux JJ
    Virus Res; 2008 Jun; 134(1-2):86-103. PubMed ID: 18261820
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Human immunodeficiency virus reverse transcriptase ribonuclease H: specificity of tRNA(Lys3)-primer excision.
    Furfine ES; Reardon JE
    Biochemistry; 1991 Jul; 30(29):7041-6. PubMed ID: 1713059
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insight into the mechanism of the stabilization of moloney murine leukaemia virus reverse transcriptase by eliminating RNase H activity.
    Mizuno M; Yasukawa K; Inouye K
    Biosci Biotechnol Biochem; 2010; 74(2):440-2. PubMed ID: 20139597
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of RNA strand displacement synthesis by Moloney murine leukemia virus reverse transcriptase.
    Kelleher CD; Champoux JJ
    J Biol Chem; 1998 Apr; 273(16):9976-86. PubMed ID: 9545343
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Substitution of Asp114 or Arg116 in the fingers domain of moloney murine leukemia virus reverse transcriptase affects interactions with the template-primer resulting in decreased processivity.
    Gu J; Villanueva RA; Snyder CS; Roth MJ; Georgiadis MM
    J Mol Biol; 2001 Jan; 305(2):341-59. PubMed ID: 11124910
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential effects of Moloney murine leukemia virus reverse transcriptase mutations on RNase H activity in Mg2+ and Mn2+.
    Blain SW; Goff SP
    J Biol Chem; 1996 Jan; 271(3):1448-54. PubMed ID: 8576137
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Abortive reverse transcription by mutants of Moloney murine leukemia virus deficient in the reverse transcriptase-associated RNase H function.
    Tanese N; Telesnitsky A; Goff SP
    J Virol; 1991 Aug; 65(8):4387-97. PubMed ID: 1712862
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Site-directed mutagenesis of Moloney murine leukemia virus reverse transcriptase. Demonstration of lysine 103 in the nucleotide binding site.
    Basu A; Basu S; Modak MJ
    J Biol Chem; 1990 Oct; 265(28):17162-6. PubMed ID: 1698772
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Defects in Moloney murine leukemia virus replication caused by a reverse transcriptase mutation modeled on the structure of Escherichia coli RNase H.
    Telesnitsky A; Blain SW; Goff SP
    J Virol; 1992 Feb; 66(2):615-22. PubMed ID: 1370551
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The isolated RNase H domain of murine leukemia virus reverse transcriptase. Retention of activity with concomitant loss of specificity.
    Zhan X; Crouch RJ
    J Biol Chem; 1997 Aug; 272(35):22023-9. PubMed ID: 9268341
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Domain structure of the Moloney murine leukemia virus reverse transcriptase: mutational analysis and separate expression of the DNA polymerase and RNase H activities.
    Tanese N; Goff SP
    Proc Natl Acad Sci U S A; 1988 Mar; 85(6):1777-81. PubMed ID: 2450347
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Binding of tRNA to reverse transcriptase of RNA tumor viruses.
    Panet A; Berliner H
    J Virol; 1978 May; 26(2):214-20. PubMed ID: 77907
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation of cloned Moloney murine leukemia virus reverse transcriptase lacking ribonuclease H activity.
    Kotewicz ML; Sampson CM; D'Alessio JM; Gerard GF
    Nucleic Acids Res; 1988 Jan; 16(1):265-77. PubMed ID: 2448747
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects on DNA synthesis and translocation caused by mutations in the RNase H domain of Moloney murine leukemia virus reverse transcriptase.
    Blain SW; Goff SP
    J Virol; 1995 Jul; 69(7):4440-52. PubMed ID: 7539510
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Requirements for the catalysis of strand transfer synthesis by retroviral DNA polymerases.
    Buiser RG; DeStefano JJ; Mallaber LM; Fay PJ; Bambara RA
    J Biol Chem; 1991 Jul; 266(20):13103-9. PubMed ID: 1712774
    [TBL] [Abstract][Full Text] [Related]  

  • 37. RNase H activity of reverse transcriptases on substrates derived from the 5' end of retroviral genome.
    Ben-Artzi H; Zeelon E; Amit B; Wortzel A; Gorecki M; Panet A
    J Biol Chem; 1993 Aug; 268(22):16465-71. PubMed ID: 7688365
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Divalent cation modulation of the ribonuclease functions of human immunodeficiency virus reverse transcriptase.
    Cirino NM; Cameron CE; Smith JS; Rausch JW; Roth MJ; Benkovic SJ; Le Grice SF
    Biochemistry; 1995 Aug; 34(31):9936-43. PubMed ID: 7543283
    [TBL] [Abstract][Full Text] [Related]  

  • 39. HIV-1 reverse transcriptase-associated RNase H cleaves RNA/RNA in arrested complexes: implications for the mechanism by which RNase H discriminates between RNA/RNA and RNA/DNA.
    Götte M; Fackler S; Hermann T; Perola E; Cellai L; Gross HJ; Le Grice SF; Heumann H
    EMBO J; 1995 Feb; 14(4):833-41. PubMed ID: 7533725
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanism of RNA primer removal by the RNase H activity of avian myeloblastosis virus reverse transcriptase.
    Champoux JJ; Gilboa E; Baltimore D
    J Virol; 1984 Mar; 49(3):686-91. PubMed ID: 6199510
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.