These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
497 related articles for article (PubMed ID: 8971135)
1. Characterization of the NADPH-dependent covalent binding of [14C]halothane to human liver microsomes: a role for cytochrome P4502E1 at low substrate concentrations. Madan A; Parkinson A Drug Metab Dispos; 1996 Dec; 24(12):1307-13. PubMed ID: 8971135 [TBL] [Abstract][Full Text] [Related]
2. Cytochrome P450 2E1 is the principal catalyst of human oxidative halothane metabolism in vitro. Spracklin DK; Hankins DC; Fisher JM; Thummel KE; Kharasch ED J Pharmacol Exp Ther; 1997 Apr; 281(1):400-11. PubMed ID: 9103523 [TBL] [Abstract][Full Text] [Related]
3. Development of a non-high pressure liquid chromatography assay to determine [14C]chlorzoxazone 6-hydroxylase (CYP2E1) activity in human liver microsomes. Draper AJ; Madan A; Latham J; Parkinson A Drug Metab Dispos; 1998 Apr; 26(4):305-12. PubMed ID: 9531516 [TBL] [Abstract][Full Text] [Related]
4. In vitro metabolism and covalent binding of ethylbenzene to microsomal protein as a possible mechanism of ethylbenzene-induced mouse lung tumorigenesis. Saghir SA; Zhang F; Rick DL; Kan L; Bus JS; Bartels MJ Regul Toxicol Pharmacol; 2010; 57(2-3):129-35. PubMed ID: 20096743 [TBL] [Abstract][Full Text] [Related]
5. Functional characterization of human and cynomolgus monkey cytochrome P450 2E1 enzymes. Hanioka N; Yamamoto M; Iwabu H; Jinno H; Tanaka-Kagawa T; Naito S; Shimizu T; Masuda K; Katsu T; Narimatsu S Life Sci; 2007 Oct; 81(19-20):1436-45. PubMed ID: 17935737 [TBL] [Abstract][Full Text] [Related]
6. Bioactivation and covalent binding of halothane in vitro: studies with [3H]- and [14C]halothane. Gandolfi AJ; White RD; Sipes IG; Pohl LR J Pharmacol Exp Ther; 1980 Sep; 214(3):721-5. PubMed ID: 7400975 [TBL] [Abstract][Full Text] [Related]
7. NADPH-dependent covalent binding of [3H]paroxetine to human liver microsomes and S-9 fractions: identification of an electrophilic quinone metabolite of paroxetine. Zhao SX; Dalvie DK; Kelly JM; Soglia JR; Frederick KS; Smith EB; Obach RS; Kalgutkar AS Chem Res Toxicol; 2007 Nov; 20(11):1649-57. PubMed ID: 17907785 [TBL] [Abstract][Full Text] [Related]
8. Cytochrome P-450-dependent bioactivation of 1,1-dichloroethylene to a reactive epoxide in human lung and liver microsomes. Dowsley TF; Reid K; Petsikas D; Ulreich JB; Fisher RL; Forkert PG J Pharmacol Exp Ther; 1999 May; 289(2):641-8. PubMed ID: 10215634 [TBL] [Abstract][Full Text] [Related]
9. NADPH-dependent microsomal electron transfer increases degradation of CYP2E1 by the proteasome complex: role of reactive oxygen species. Goasduff T; Cederbaum AI Arch Biochem Biophys; 1999 Oct; 370(2):258-70. PubMed ID: 10510285 [TBL] [Abstract][Full Text] [Related]
10. Imipramine-induced inactivation of a cytochrome P450 2D enzyme in rat liver microsomes: in relation to covalent binding of its reactive intermediate. Masubuchi Y; Igarashi S; Suzuki T; Horie T; Narimatsu S J Pharmacol Exp Ther; 1996 Nov; 279(2):724-31. PubMed ID: 8930177 [TBL] [Abstract][Full Text] [Related]
11. Relationship between cytochrome P450 catalytic cycling and stability: fast degradation of ethanol-inducible cytochrome P450 2E1 (CYP2E1) in hepatoma cells is abolished by inactivation of its electron donor NADPH-cytochrome P450 reductase. Zhukov A; Ingelman-Sundberg M Biochem J; 1999 Jun; 340 ( Pt 2)(Pt 2):453-8. PubMed ID: 10333489 [TBL] [Abstract][Full Text] [Related]
12. Metabolism of the cytochrome P450 mechanism-based inhibitor N-benzyl-1-aminobenzotriazole to products that covalently bind with protein in guinea pig liver and lung microsomes: comparative study with 1-aminobenzotriazole. Woodcroft KJ; Webb CD; Yao M; Weedon AC; Bend JR Chem Res Toxicol; 1997 May; 10(5):589-99. PubMed ID: 9168258 [TBL] [Abstract][Full Text] [Related]
14. Metabolic activation of diclofenac by human cytochrome P450 3A4: role of 5-hydroxydiclofenac. Shen S; Marchick MR; Davis MR; Doss GA; Pohl LR Chem Res Toxicol; 1999 Feb; 12(2):214-22. PubMed ID: 10027801 [TBL] [Abstract][Full Text] [Related]
15. P450-dependent and nonenzymatic human liver microsomal defluorination of fluoromethyl-2,2-difluoro-1-(trifluoromethyl)vinyl ether (compound A), a sevoflurane degradation product. Kharasch ED; Hankins DC Drug Metab Dispos; 1996 Jun; 24(6):649-54. PubMed ID: 8781780 [TBL] [Abstract][Full Text] [Related]
16. Differences in cytochrome P450-mediated biotransformation of 1,2-dichlorobenzene by rat and man: implications for human risk assessment. Hissink AM; Oudshoorn MJ; Van Ommen B; Haenen GR; Van Bladeren PJ Chem Res Toxicol; 1996 Dec; 9(8):1249-56. PubMed ID: 8951226 [TBL] [Abstract][Full Text] [Related]
17. Practolol metabolism. III. Irreversible binding of [14C]practolol metabolite(s) to mammalian liver microsomes. Orton TC; Lowery C J Pharmacol Exp Ther; 1981 Oct; 219(1):207-12. PubMed ID: 6793710 [TBL] [Abstract][Full Text] [Related]
18. Bioactivation of phenytoin by human cytochrome P450: characterization of the mechanism and targets of covalent adduct formation. Munns AJ; De Voss JJ; Hooper WD; Dickinson RG; Gillam EM Chem Res Toxicol; 1997 Sep; 10(9):1049-58. PubMed ID: 9305589 [TBL] [Abstract][Full Text] [Related]
19. Chlorzoxazone metabolism by winter flounder liver microsomes: evidence for existence of a CYP2E1-like isoform in teleosts. Wall KL; Crivello J Toxicol Appl Pharmacol; 1998 Jul; 151(1):98-104. PubMed ID: 9705891 [TBL] [Abstract][Full Text] [Related]
20. Metabolism of 3-methylindole in human tissues. Ruangyuttikarn W; Appleton ML; Yost GS Drug Metab Dispos; 1991; 19(5):977-84. PubMed ID: 1686246 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]