These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 8971201)

  • 1. Modeling of the response of midbrain auditory neurons in the rat to their vocalization sounds based on FM sensitivities.
    Kao MC; Poon PW; Sun X
    Biosystems; 1997; 40(1-2):103-9. PubMed ID: 8971201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Representation of temporal features of complex sounds by the discharge patterns of neurons in the owl's inferior colliculus.
    Keller CH; Takahashi TT
    J Neurophysiol; 2000 Nov; 84(5):2638-50. PubMed ID: 11068005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Responses of midbrain auditory neurons in rats to FM and AM tones presented simultaneously.
    Lee MF; So EC; Poon PW
    Chin J Physiol; 2010 Dec; 53(6):465-71. PubMed ID: 21793359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural echolocation sequences evoke echo-delay selectivity in the auditory midbrain of the FM bat, Eptesicus fuscus.
    Macías S; Luo J; Moss CF
    J Neurophysiol; 2018 Sep; 120(3):1323-1339. PubMed ID: 29924708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectrotemporal receptive fields in the inferior colliculus revealing selectivity for spectral motion in conspecific vocalizations.
    Andoni S; Li N; Pollak GD
    J Neurosci; 2007 May; 27(18):4882-93. PubMed ID: 17475796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid Task-Related Plasticity of Spectrotemporal Receptive Fields in the Auditory Midbrain.
    Slee SJ; David SV
    J Neurosci; 2015 Sep; 35(38):13090-102. PubMed ID: 26400939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basic response determinants of single neurons to amplitude modulation in the auditory midbrain.
    Chiu TW; Poon PW
    Exp Brain Res; 2000 Sep; 134(2):237-45. PubMed ID: 11037291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectro-temporal receptive fields of midbrain auditory neurons in the rat obtained with frequency modulated stimulation.
    Poon PW; Yu PP
    Neurosci Lett; 2000 Jul; 289(1):9-12. PubMed ID: 10899396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral summation and facilitation in on- and off-responses for optimized representation of communication calls in mouse inferior colliculus.
    Akimov AG; Egorova MA; Ehret G
    Eur J Neurosci; 2017 Feb; 45(3):440-459. PubMed ID: 27891665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic spectrotemporal feature selectivity in the auditory midbrain.
    Lesica NA; Grothe B
    J Neurosci; 2008 May; 28(21):5412-21. PubMed ID: 18495875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered sensitivities of auditory neurons in the rat midbrain following early postnatal exposure to patterned sounds.
    Poon PW; Chen XY; Hwang JC
    Brain Res; 1990 Aug; 524(2):327-30. PubMed ID: 2292015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling complex responses of FM-sensitive cells in the auditory midbrain using a committee machine.
    Chang TR; Chiu TW; Sun X; Poon PW
    Brain Res; 2013 Nov; 1536():44-52. PubMed ID: 23665390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of frequency-modulated and complex sounds by single auditory neurones of bats.
    Suga N
    J Physiol; 1968 Sep; 198(1):51-80. PubMed ID: 5677032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Responses of neurons in the rat's inferior colliculus to a sound are affected by another sound in a space-dependent manner.
    Chot MG; Tran S; Zhang H
    Sci Rep; 2019 Sep; 9(1):13938. PubMed ID: 31558791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple-band trigger features of midbrain auditory neurons revealed in composite spectro-temporal receptive fields.
    Chiu TW; Poon PW
    Chin J Physiol; 2007 Jun; 50(3):105-12. PubMed ID: 17867430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GABA
    Gourévitch B; Mahrt EJ; Bakay W; Elde C; Portfors CV
    J Neurophysiol; 2020 Jan; 123(1):134-148. PubMed ID: 31721644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular recording reveals temporal integration in inferior colliculus neurons of awake bats.
    Voytenko SV; Galazyuk AV
    J Neurophysiol; 2007 Feb; 97(2):1368-78. PubMed ID: 17135472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Basic determinants for FM responses in the inferior colliculus of rats.
    Poon PW; Chen X; Hwang JC
    Exp Brain Res; 1991; 83(3):598-606. PubMed ID: 2026200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural selectivity and tuning for sinusoidal frequency modulations in the inferior colliculus of the big brown bat, Eptesicus fuscus.
    Casseday JH; Covey E; Grothe B
    J Neurophysiol; 1997 Mar; 77(3):1595-605. PubMed ID: 9084622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Duration-sensitive neurons in the inferior colliculus of horseshoe bats: adaptations for using CF-FM echolocation pulses.
    Luo F; Metzner W; Wu F; Zhang S; Chen Q
    J Neurophysiol; 2008 Jan; 99(1):284-96. PubMed ID: 18003879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.