These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 8971949)
1. Clinical evaluation of the oxygenation capacity and controllability of 15 commercially available membrane oxygenators during alpha-stat regulated hypothermic cardiopulmonary bypass. Stinkens D; Himpe D; Thyssen P; De Bakker A; Smets W; Borms S; Suy M; Muylaert P; Van Hove M; Theunissen W; Van Cauwelaert P Perfusion; 1996 Nov; 11(6):471-80. PubMed ID: 8971949 [TBL] [Abstract][Full Text] [Related]
2. Clinical evaluation of six hollow-fibre membrane oxygenators. Visser C; de Jong DS Perfusion; 1997 Nov; 12(6):357-68. PubMed ID: 9413848 [TBL] [Abstract][Full Text] [Related]
3. Pulsatile and nonpulsatile extracorporeal circulation using Capiox E terumo oxygenator: a comparison study with Ultrox and Maxima membrane oxygenators. Minami K; Bairaktaris A; Murray E; Weitkemper H; Dramburg W; Körfer R J Cardiovasc Surg (Torino); 1997 Jun; 38(3):227-32. PubMed ID: 9219471 [TBL] [Abstract][Full Text] [Related]
4. Clinical evaluation of five commercially available adult oxygenators in terms of pressure drop during normothermic and hypothermic cardiopulmonary bypass. Ji B; Wang H; Miao N; Xing J; Liu W; Liu R; Long C Int J Artif Organs; 2010 May; 33(5):310-6. PubMed ID: 20593353 [TBL] [Abstract][Full Text] [Related]
5. Clinical evaluation of nine hollow-fibre membrane oxygenators. Segers PA; Heida JF; de Vries I; Maas C; Boogaart AJ; Eilander S Perfusion; 2001 Mar; 16(2):95-106. PubMed ID: 11334201 [TBL] [Abstract][Full Text] [Related]
6. Comparison of hollow-fiber membrane oxygenators in terms of pressure drop of the membranes during normothermic and hypothermic cardiopulmonary bypass in neonates. Undar A; Owens WR; McGarry MC; Surprise DL; Kilpack VD; Mueller MW; McKenzie ED; Fraser CD Perfusion; 2005 May; 20(3):135-8. PubMed ID: 16038384 [TBL] [Abstract][Full Text] [Related]
7. Testing neonate-infant membrane oxygenators with the University of Texas neonatal pulsatile cardiopulmonary bypass system in vitro. Undar A; Holland MC; Howelton RV; Benson CK; Ybarra JR; Miller OL; Rossbach MM; Runge TM; Johnson SB; Sako EY; Calhoon JH Perfusion; 1998 Sep; 13(5):346-52. PubMed ID: 9778720 [TBL] [Abstract][Full Text] [Related]
8. Comparing oxygen transfer performance between three membrane oxygenators: effect of temperature changes during cardiopulmonary bypass. Jegger D; Tevaearai HT; Mallabiabarrena I; Horisberger J; Seigneul I; von Segesser LK Artif Organs; 2007 Apr; 31(4):290-300. PubMed ID: 17437498 [TBL] [Abstract][Full Text] [Related]
9. Comparison of hollow-fiber membrane oxygenators with different perfusion modes during normothermic and hypothermic CPB in a simulated neonatal model. Undar A; Ji B; Lukic B; Zapanta CM; Kunselman AR; Reibson JD; Khalapyan T; Baer L; Weiss WJ; Rosenberg G; Myers JL Perfusion; 2006 Nov; 21(6):381-90. PubMed ID: 17312863 [TBL] [Abstract][Full Text] [Related]
10. Clinical evaluation of the Medtronic Maxima Plus membrane oxygenator. Fried DW; DeBenedetto BN; Zombolas TL; Leo JJ Perfusion; 1994; 9(5):363-72. PubMed ID: 7833545 [TBL] [Abstract][Full Text] [Related]
12. The relationship between oxygenator exhaust P(CO2) and arterial P(CO2) during hypothermic cardiopulmonary bypass. Graham JM; Gibbs NM; Weightman WM; Sheminant MR Anaesth Intensive Care; 2005 Aug; 33(4):457-61. PubMed ID: 16119486 [TBL] [Abstract][Full Text] [Related]
13. Oxygenator evaluation: Maxima 1380 versus Maxima Plus. Engle JH; Ploessl J; Sutton R J Extra Corpor Technol; 1995 Mar; 27(1):15-8. PubMed ID: 10150756 [TBL] [Abstract][Full Text] [Related]
14. A comparison of gaseous emboli release in five membrane oxygenators. Beckley PD; Shinko PD; Sites JP Perfusion; 1997 Mar; 12(2):133-41. PubMed ID: 9160365 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of neonatal membrane oxygenators with respect to gaseous microemboli capture and transmembrane pressure gradients. Qiu F; Guan Y; Su X; Kunselman A; Undar A Artif Organs; 2010 Nov; 34(11):923-9. PubMed ID: 21092035 [TBL] [Abstract][Full Text] [Related]
16. A new method to measure oxygenator oxygen transfer performance during cardiopulmonary bypass: clinical testing using the Medtronic Fusion oxygenator. Hamilton C; Marin D; Weinbrenner F; Engelhardt B; Rosenzweig D; Beck U; Borisov P; Hohe S Perfusion; 2017 Mar; 32(2):133-140. PubMed ID: 27600701 [TBL] [Abstract][Full Text] [Related]
17. The effect of oxygenator membranes on blood: a comparison of two oxygenators in open-heart surgery. Noora J; Lamy A; Smith KM; Kent R; Batt D; Fedoryshyn J; Wang X Perfusion; 2003 Sep; 18(5):313-20. PubMed ID: 14604250 [TBL] [Abstract][Full Text] [Related]
18. A multi-center trial with a modified design of the Sarns membrane oxygenator. Bearss MG; Bolles R; Brennan K J Extra Corpor Technol; 1992; 24(2):49-54. PubMed ID: 10147907 [TBL] [Abstract][Full Text] [Related]
19. Impact of membrane oxygenators on pulsatile versus nonpulsatile perfusion in a neonatal model. Undar A; Koenig KM; Frazier OH; Fraser CD Perfusion; 2000 Mar; 15(2):111-20. PubMed ID: 10789565 [TBL] [Abstract][Full Text] [Related]
20. Ex vivo evaluation of a new neonatal/infant oxygenator: comparison of the Terumo CAPIOX Baby RX with Dideco Lilliput 1 and Polystan Safe Micro in the piglet model. Dubois J; Jamaer L; Mees U; Pauwels J; Briers F; Lehaen J; Hendrikx M Perfusion; 2004; 19(5):315-21. PubMed ID: 15506038 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]